
Hardware Obfuscation using PUF-based Logic

James B. Wendt and Miodrag Potkonjak

Computer Science Department

University of California, Los Angeles

{jwendt, miodrag}@cs.ucla.edu

Abstract—There is a great need to develop universal and
robust techniques for intellectual property protection of inte-
grated circuits. In this paper, we introduce techniques for the
obfuscation of an arbitrary circuit by using physical unclonable
functions (PUFs) and programmable logic. Specifically, we in-
troduce the notion of PUF-based logic which can be configured
to be functionally equivalent to any arbitrary design, as well
as a new architecture for wire merging that obfuscates signal
paths exponentially. We systematically apply our techniques in
such a way so as to maximize obfuscation while minimizing
area and delay overhead. We analyze our techniques on popular
benchmark circuits and show them to be resilient against very
powerful reverse engineering attacks in which the adversary has
knowledge of the complete netlist along with the ability to read
and write to any flip-flop in the circuit.

I. INTRODUCTION

The state of the art in reverse engineering is so advanced
that industrial chips with a billion transistors can be reverse
engineered in a matter of a few weeks. There are even a
number of dedicated companies that on a regular basis reverse
engineer new industrial integrated circuits (ICs). Hardware
obfuscation is an approach that aims to prevent the possibility
of reverse engineering ICs. Recently, several conceptually new
and interesting approaches in hardware obfuscation have been
proposed and demonstrated. Our goal is to advance the state
of the art in hardware obfuscation by presenting a technique
in which reverse engineering does not only require that each
transistor be fully characterized in terms of its delay, but
also enables configurable obfuscation in the sense that each
integrated circuit for a given design is obfuscated in a unique
way.

The starting point for our approach is the use of physical
unclonable functions (PUFs) for our conceptually new task.
A PUF is a hardware device that has a complex but definite
mapping from inputs to outputs that is practically impossible to
reverse engineer. Furthermore, the device cannot be physically
cloned. Currently, most PUF designs achieve unclonability
and complexity by exploiting silicon manufacturing variability
that manifests as variations in circuit element properties, such
as delay and leakage energy. The complete functionality of
the PUF is only known if the entire input-output (challenge-
response) table is enumerated or each gate’s internal properties
are fully characterized.

We have developed two techniques that exploit the inherent
randomness of the PUF in order to obfuscate a circuit. The first
technique obfuscates an arbitrary piece of random logic by
replacing it entirely. Specifically, we implement the pertinent
piece of logic using a physical unclonable function in conjunc-
tion with a supporting small piece of configurable fabric, such
as a field-programmable gate array (FPGA). The purpose of

the PUF is to obfuscate the circuit, since its functionality is
known only to the designer and trusted manufacturer, while
the purpose of the programmable fabric is to implement
the original piece of replaced logic using the PUF whose
characterization is only known after fabrication.

The second technique hides circuit functionality by obfus-
cating signal paths in the interconnect network. Pairs of wires
are merged together such that an attacker cannot determine
which signal propagates along which path. In this scenario, the
PUF is used to control these junctions in such a way that the
original circuit functionality is simultaneously preserved and
obfuscated. We employ these two techniques in such a way that
delay constraints are satisfied while security is maximized for
a user specified area and energy overhead.

The most important specification in security analysis is the
specification of attacks and analysis of how specific techniques
are resilient against these types of attacks. In our analysis we
consider two extremely powerful attacks. In both attacks we
assume the adversary has complete knowledge of the circuit
netlist, but does not have access to individual gate properties
such as dopant concentrations and channel lengths. The first
attack assumes that an adversary can simultaneously observe
all flip-flops in any clock cycle. The second attack is even
more powerful and allows that the adversary can not only
simultaneously observe all flip-flops but can also control every
flip-flop in the design. We develop heuristics that minimize the
effectiveness of these two attacks along with simulation based
techniques that quantify the attack time effort required in order
to break our security. We apply our techniques to a number of
ISCAS’89 and ITC’99 benchmarks and successfully obfuscate
their functionality with an overhead of up to 10% in area.

It is very important to note that our techniques for config-
urable obfuscation can also be used for many other security
tasks. For example, when using configurable obfuscation it is
much more difficult for an attacker to place an unnoticeable
Trojan horse in the circuit since he is not aware of the circuit’s
complete design. Also, the PUF can be used as watermarking
information for each and every IC produced of a particular
design.

The remainder of this paper is organized as follows. First,
we survey recent research and developments in the field of
hardware security. Second, we provide a brief overview of
the standard delay-based PUF model which we incorporate
in our techniques. Next, we describe in detail our PUF-based
logic architecture and signal path obfuscation techniques. We
describe two types of attacks and present heuristics for config-
uration of both of our new architectures for reverse engineering
prevention. And finally, we analyze our techniques in terms of
security and overhead.

978-1-4799-6278-5/14/$31.00 ©2014 IEEE 270

II. RELATED WORK

While there have been a number of efforts to produce
systems in many technologies which are equivalent to PUFs,
process variation has enabled the creation of practical and
low cost PUFs. An MIT group developed the concept and
a large number of silicon prototypes in several technologies
which demonstrated their advantages and limitations [1]. PUFs
have been used in a number of applications including device
authentication, secrete key generation, anti-counterfeiting, key
distribution, and secure key storage [2] [3]. Recently, the
emergence of the digital PUF has enabled its direct integration
into digital logic in both ASIC [4] [5] and FPGA systems [6]
[7] [8] [9]. The use of emerging nanotechnologies for PUFs
has introduced an entirely new security dimension which has
yet to be implemented in traditional designs [10] [11]. There
are several excellent surveys on the history and state of the art
of PUFs [12] [13].

In the last quarter century numerous techniques for reverse
engineering and layout reconstruction on silicon chips have
been proposed and demonstrated [14] [15] [16] [17]. For ex-
ample, both in academia and in industry, state of the art proces-
sors, like Intel’s general purpose processors, have been reverse
engineered. Two excellent summaries on the state of the art in
reverse engineering have been presented by Chipworks [18]
[19]. Other recent efforts in reverse engineering apply logic
synthesis and formula verification techniques to functionally
reconstruct significant percentages of logic circuitry [20] [21].
Other interesting and important reverse engineering efforts
include imaging-based and side channel attacks [22] [23].

Hardware obfuscation is a task that aims to prevent IC
reverse engineering. It can be divided into two broad groups. In
the first, unique structures are added to ICs in such a way that
only the designer of the circuit can enable and disable correct
functional execution [24] [25]. There have also been efforts
to obfuscate ICs in such a way that the physical structure of
gates is difficult to deduce during reverse engineering because
two or more types of gates differ in only ultra small details
of implementation that cannot be easily deduced using state
of the art reverse engineering techniques [26]. An NYU Poly
research group has demonstrated the effectiveness of these
techniques and quantified the overhead in terms of important
design metrics [27]. Finally, in the late 90s there were a number
of efforts to enable a designer’s signature to be permanently
written to hardware as proof of intellectual ownership [28].

Our work is a conceptually new application of PUFs for
hardware obfuscation. While hardware obfuscation enabling
and disabling techniques have been previously accomplished
using PUFs, this is the first time that the PUF actually im-
plements random logic in such a way that the functionality of
the circuit is completely hidden. This new proposed technique
is different from all previously proposed hardware obfuscation
techniques because it reduces reverse engineering not just to
the problem of identifying which gates are connected in which
way, but also requires that the number of dopants in each
transistor is accurately recovered (i.e. delay characterization),
which is well beyond the feasibility of current reverse engi-
neering attacks. Another important difference between state of
the art obfuscation techniques and our new approach is that in
each instance of an integrated circuit our approach results in a
different type of obfuscation. Therefore, even if the attacker is

Fig. 1: Standard delay-based arbiter PUF [2].

(a) (b) (c)

Fig. 2: Three architectures implementing the same function-
ality. (a) Arbitrary circuitry. (b) PUF-based logic using a
preceding FPGA. (c) PUF-based logic using a preceding PUF.

successful in reverse engineering a particular chip he cannot
validate the functional correctness of other fabricated chips
that are obfuscated.

III. STANDARD PUF OVERVIEW

Our obfuscation techniques employ the standard delay-
based arbiter PUF originally designed by Suh et al. at MIT [2].
The phenomenon that enables its security and unclonability
is process variation. Inherent randomness in manufacturing
processes manifest as deviations in gate characteristics from
nominal specifications even among designs fabricated on the
same die. More specifically, each gate in the standard PUF
is ultimately fabricated with different delays and cannot be
controlled beyond a certain level of granularity.

The standard delay-based arbiter PUF takes advantage of
these delay deviations using the architecture depicted in Figure
1. A challenge input of n bits, represented by the vector C =
[C0, C1, . . . , Cn−1] is applied, and a rising edge is sent through
the PUF. The rising edge is split into two at the first junction
of multiplexors. The path of each rising edge will then switch
positions (top or bottom) depending on the challenge vector
bit. In this example, a challenge bit of 1 will swap the paths,
while a value of 0 will keep the paths propagating along their
current line. The first path to arrive at the arbiter determines
the output response, R, of the PUF.

For the purposes of circuit obfuscation, the functionality
of the PUF must be characterized post fabrication and only by
the designer or trusted manufacturer. Immediately following
characterization by the trusted authority we remove the ability

271

for further direct characterization attempts. This can be done
by either laser burning access wires or burning supporting fuses
[29] [30].

Note that while we use the delay-based arbiter PUF because
it is considered to be the standard PUF, our techniques are
compatible with the majority of IC-based PUF designs.

It is known that the standard delay-based arbiter PUF
can be susceptible to operating conditions (e.g. temperature
variations, voltage fluctuations). However, this susceptibility
is limited to specific challenge vectors whose corresponding
PUF delay paths differ by extremely small amounts. Thus,
fluctuations in operating conditions can change the outcome
of the PUF response for these input vectors. We discuss how
we handle these stability issues in Section IV-B.

IV. ARBITRARY LOGIC REPLACEMENT

Our first technique obfuscates an arbitrary circuit by re-
placing it with PUF-based logic. PUF-based logic directly
implements the original functionality of the replaced circuit
while also hiding its functionality. We explore two potential
architectures, as depicted in Figure 2. Since the functionality
of the PUF is a byproduct of manufacturing processes, its
characterization is not known until after fabrication. Once
fabricated, the designer characterizes the PUF through special
supporting hardware, then burns the pertinent access wires to
disallow any subsequent unauthorized characterization. Now
that the PUF’s unique functionality is known only to the
designer, the FPGA fabric is programmed using standard
synthesis tools in order to implement the original replaced
circuitry in conjunction with the corresponding PUF.

A. Programmable Fabric Configuration

Since each fabricated PUF is unique and unclonable, the
supporting FPGA in the PUF-based logic architecture enables
the replication of an arbitrary function. Once the PUF on a
pertinent circuit has been characterized, the supporting FPGA
fabric is configured accordingly given the known PUF mapping
using standard synthesis tools.

Figure 3 contains a motivational example in which we
hide the functionality of the c17 circuit from the ISCAS’85
benchmark suite [31] by obfuscating a portion of the circuitry.
The shaded portion in Figure 3a is the logic to be replaced and
obfuscated. The resulting obfuscated architecture is depicted in
Figure 3b.

Note that gates D and F are eliminated entirely while gate C
remains despite participating in the computation of z1. This is
because gates D and F only affect z1, while the output of gate C
(y2) is also required for the computation of z0. Thus, we cannot
eliminate C entirely from the circuit. Note that while retaining
gate C does increase overhead, it does not compromise security
in any way since an attacker cannot know with any certainty
which remaining gates in the obfuscated circuit are included
in the PUF-based logic cell, if any are at all.

We present an example challenge-response table for a small
PUF in 3c. In this example, we assume that the challenge
C = [1, 0] is unstable. As such, we program the FPGA so that
it will not produce this output.

(a) Original circuit

(b) Obfuscated circuit

C1 C0 R

0 0 1
0 1 0
1 0 -
1 1 1

(c) PUF switching table

c1 = y′1

c0 = y1x
′

1x
′

4

(d) FPGA implementation

Fig. 3: Motivational example of PUF-based logic replacing a
portion of (a) the c17 circuit from the ISCAS’85 benchmark
suite [31]. (b) Obfuscated circuit. (c) Example characterized
PUF switching table. (d) FPGA implementation enabling the
replaced circuit functionality in conjunction with the PUF.

The FPGA is synthesized such that for a particular input
vector, [x4, y1, x3], it produces an input to the PUF that maps
to the original correct output at z1. One such specification is
depicted in 3d. In this small example, the FPGA produces 3
potential output vectors which ultimately map z1 to either 0
or 1. Without knowledge of the internal characteristics of the
PUF, the mapping cannot be deduced. Of course, since this is a
very small example, a brute force attack could easily enumerate
all possible inputs to the PUF-based logic cell, however,
we later demonstrate that this attack is infeasible for larger
designs. Security can be further improved by randomizing the
challenges outputted by the FPGA, especially for larger input
spaces.

B. Stabilizing the Standard PUF

As previously mentioned, it has been observed that for
some input vectors it is possible that a standard delay-based
arbiter PUF produces unstable outputs. Specifically, there
may exist challenge vectors which could potentially produce
different responses depending on operating conditions such as
temperature variations and voltage fluctuations. Hence, when
employing the standard PUF, we specifically choose to use the

272

architecture in which the FPGA precedes the PUF, as depicted
in Figure 2b. In this way, we can configure the FPGA to
eliminate potential unstable inputs.

While the architecture in Figure 2c is not ideal for the
standard delay-based arbiter PUF due to the issue of unstable
inputs, if we employ a PUF that is stable for all inputs, then
this architecture is a viable option and potentially preferable.
This architecture provides an additional layer of security that
is inherent in the design. By placing the FPGA after the PUF,
the PUF’s output is not directly known and thus it is more
difficult for an adversary to attack without reverse engineering
the FPGA inputs from its output first.

V. SIGNAL PATH OBFUSCATION

Our second obfuscation technique utilizes PUFs to ob-
fuscate circuit functionality by directly obfuscating the inter-
connect network. Specifically, we combine pairs of wires in
such a way that their paths are unknown. Figure 4 depicts
our architecture for signal path obfuscation. Similar to the
PUF-based logic case, after fabrication the pertinent PUFs are
characterized and the inputs to each PUF are set such that
they swap their corresponding wires according to the original
circuit functionality.

This technique becomes very powerful when many wire
swapping components are placed throughout the circuit in such
a way that storage elements are affected by many potential
swaps. For example, if the input to a single storage element
is affected by k swapping components, then there exist 2k

possible configurations from which an attacker must determine
the correct configuration in order to deduce the correct func-
tionality of the circuit.

This obfuscation architecture should be placed such that
the most number of flip-flops are affected the most number
of times. We also take into consideration the additional delay
overhead that comes with this architecture, and place these
wire swapping components between gates with positive slack,
so as not to affect the critical path.

It is important to note that our signal path obfuscation and
PUF-based logic techniques are orthogonal and can be applied
to an arbitrary circuit simultaneously.

VI. ATTACKS

We assume there exist two types of attacks on the PUF-
based logic and signal path obfuscation techniques. In both
attacks, we assume an adversary has complete knowledge of
the design of the circuit, including the functionality of any
pertinent programmable logic, but does not know the input-
output mapping of any PUFs. In the first attack, we assume
that the adversary has the powerful ability to both read and
write to all flip-flops in the circuit. The second attack assumes
that an adversary has the ability to read all flip-flops, but can
only write to the primary inputs.

In the case of PUF-based logic, a successful attack is one
in which all PUFs are characterized. In the first powerful
attack, the security of our obfuscation technique relies solely
on the attacker’s ability to reverse engineer the PUF through
application of a complete set of inputs. By reading each
corresponding output, a complete characterization table can be

Fig. 4: Signal path obfuscation architecture for wire swapping.
The input X can only be set correctly by the designer who
knows the functionality of the PUF.

built. Thus, secure obfuscation relies on the size of the PUF,
since the total input space grows exponentially with its size.
We can make the task more difficult by using the architecture
from Figure 2c in which the PUF precedes the FPGA. In this
scenario, the attacker will not have direct access to the PUF
output, but must instead reverse engineer its output values from
the FPGA output.

In the case of the second type of attack, an adversary must
intelligently apply inputs at each clock cycle such that he
can indirectly apply as many inputs as possible to the PUF
and measure the corresponding outputs. This attack is more
difficult since the attacker cannot directly control all flip-flops,
but instead must attempt to indirectly control them through
the primary inputs. In this scenario we can make the reverse
engineering task very difficult by placing the PUF in locations
that are difficult to control indirectly. We discuss the specifics
of these techniques in Section VII-A.

In the case of reverse engineering circuit functionality in
the presence of signal path obfuscation, the attacker does
not need to fully characterize all PUFs, but instead needs to
determine the circuit-wide configuration of all wire swapping
components (i.e. whether each individual wire pair is swapped
or not). An attacker can test his configuration by applying a
circuit input vector with known outputs and testing to see if the
resultant outputs are as expected. However, even if the circuit
outputs are as expected, the attacker has still not yet completely
correctly reverse engineered the circuit since he may have
only correctly solved those wire swapping components that
received a 0 on one wire and a 1 on the other. For the cases
in which both wires are the same value, the configuration is
not yet confirmed. Furthermore, for some input vectors there
is a possibility that particular wire values do not participate in
the final output (i.e. don’t-cares). For example, even if a wire
swapping component swaps a 1 and a 0, the 1 might propagate
to an AND gate containing another input whose value is 0. In
this case, the swap had no affect on the final output.

Ultimately, an attacker will be forced to try a large portion,
if not all, of the 2k combinations of configurations, where
k is the number of wire swappings affecting a single flip-
flop. By testing all of these configurations on a single set of
known inputs and outputs, most likely he will find a set of
partially correct configurations. The set will only be partial due
to the don’t-cares and correlation scenarios mentioned above.
However, with these known configurations, he can repeat the
same steps using the next set of known inputs and outputs to
slowly build a more complete configuration.

273

VII. TECHNIQUES

A. Logic Replacement

For the powerful attack case in which an adversary has
write access to all flip-flops, the security of the PUF-based
logic relies on the size of the PUF to create an exponential
input space. Additionally, if we use a stable PUF, we employ
the architecture from Figure 2c, in which the programmable
fabric follows the PUF, to further prevent attacks by disabling
direct access to the PUF output.

We prevent the second type of attack, in which an adversary
can read all flip-flops but can only write to primary inputs, by
replacing portions of circuitry with PUF-based logic in such a
way that it is difficult for the attacker to set the PUF’s inputs
and thus increase his knowledge of the PUF’s functionality by
reading the corresponding outputs. Our placement criteria to
accomplish this are the following:

• Place PUF-based logic where it is affected by many
flip-flops, specifically by flip-flops which cannot be
set directly by the attacker.

• Place PUF-based logic where it affects many flip-flops
which cannot be set directly by the attacker.

• Place PUF-based logic where its inputs are highly
correlated, thus making it very difficult for the attacker
to build a large input-output table.

Since there are an exponential number of possibilities for
selecting subcircuits for replacement with PUF-based logic, we
simplify the task by performing multiple breadth first searches
emanating from the input wires of flip-flops and traversing
backwards through the circuit exploring potential PUF-based
logic placements and measuring their security properties and
overhead. In this way, we reduce the search space and still find
many configurations that are both low in overhead and high in
security. We discuss our results in detail in Section VIII.

B. Signal Path Obfuscation

For the case of signal path obfuscation, our techniques
secure the obfuscated circuit functionality for both types of
defined attacks. This is accomplished using the wire swapping
architecture from Figure 4 and combining pairs of wires (i)
that affect many flip-flops, (ii) that are affected by many
flip-flops, (iii) whose inputs are correlated, and (iv) that are
affected by previously assigned wire swapping components.
By positioning wire swapping components between wires that
affect and are affected by many flip-flops we ensure that
wire swapping has a large and unpredictable impact on the
circuit. By choosing pairs of wires that are highly correlated we
ensure that reverse engineering remains difficult since if two
wires consistently have similar values it is difficult to deduce
whether or not they are being swapped. And finally, by placing
wire swappings along paths in which previously assigned
wire swapping components are installed we ensure exponential
growth in the total number of possible configurations.

We iteratively assign wire swapping components between
pairs of wires throughout the circuit according to a linear
evenly weighted sum of these heuristics. Specifically, we
consider (i) the union of flip-flops affected by pairs of wires as

a fraction of the total flip-flops in the circuit, (ii) the union of
flip-flops affecting pairs of wires as a fraction of the total flip-
flops in the circuit, (iii) the coefficient of determination, R2,
between pairs of wires, and (iv) the union of wire swapping
components preceding and affecting pairs of wires. Further-
more, we only consider pairs of wires which are not on the
critical path and have positive slack. Thus obfuscating circuity
functionality without overhead in terms of overall circuit delay.

VIII. ANALYSIS

We analyze our PUF-based logic and signal path obfusca-
tion techniques in terms of security and overhead by applying
them to the circuits in the ISCAS’89 and ITC’99 benchmark
suites [32] [33].

Figure 5 depicts results from our signal path obfuscation
techniques on six example circuits. Specifically, we show
the distributions of flip-flops that are affected by the labeled
number of wire swappings on the x-axis. In all cases we
successfully obfuscate a majority percentage of flip-flops using
a very large number of wire swappings. This in turn creates a
hugely exponential configuration search space for an attacker
to reverse engineer. Note that wire swappings are applied only
to wire pairs which have positive slack, thus ensuring that our
final obfuscated circuit has no delay overhead.

Figures 6, 7, 8, and 9 depict the many PUF-based logic
configurations that our techniques enumerate in the exponential
search space for the six example circuits. Our heuristics find
arbitrary portions of circuitry for PUF-based logic replacement
in which there are a large number of inputs, large number
of affected flip-flops, and are affected by a large number of
flip-flops. These figures highlight the numerous PUF-based
logic configurations that both satisfy our heuristics while
simultaneously minimally impacting overhead.

Finally, we depict the security properties of our PUF-based
logic obfuscation techniques in Figure 10. Each plot represents
a single portion of arbitrary logic replaced with a single PUF-
based logic architecture. We attack the resultant obfuscated
circuitry by controlling the primary inputs and measuring the
inputs and outputs at the pertinent PUF at each clock cycle.
The figures depict the fractional number of correctly reverse
engineered input-output mappings for the given PUF-based
logic design as it relates to the pertinent PUF’s number of
inputs, placement in terms of depth in the circuit, number
of affected flip-flops, and the number of flip-flops affecting
the replaced logic. In each case, a linear increase in the
corresponding heuristic causes an order of magnitude increase
in difficulty of reverse engineering the circuit.

IX. CONCLUSION

We have presented new approaches for hardware obfusca-
tion through the use of physical unclonable functions for actual
random logic implementation such that the functionality of
the replaced logic is completely hidden. Specifically, we pre-
sented two techniques, signal path obfuscation and the direct
replacement of arbitrary logic using PUFs and reconfigurable
logic. We provided algorithms and heuristics for the placement
of each of the new techniques, applied them on a host of
benchmark circuits, and demonstrated that they successfully
obfuscate circuit functionality, impose minimal overhead in

274

0 500 1000 1500 2000 2500
0

50

100
F

lip
−

fl
o
p
s

Wire Swappings

s38417

0 1000 2000 3000 4000
0

50

100

150

200

F
lip

−
fl
o
p
s

Wire Swappings

s38584

0 100 200 300 400 500
0

5

10

15

20

F
lip

−
fl
o
p
s

Wire Swappings

b20
1

0 100 200 300 400 500 600
0

10

20

30

F
lip

−
fl
o
p
s

Wire Swappings

s5378

0 500 1000 1500 2000
0

20

40

60

F
lip

−
fl
o
p
s

Wire Swappings

s9234

0 100 200 300 400
0

5

10

15

20

F
lip

−
fl
o
p
s

Wire Swappings

b21
1

Fig. 5: Total number of flip-flops affected by the labeled number of wire swapping components.

0 20 40 60 80 100
0

0.01

0.02

0.03

Inputs

A
re

a
 O

v
e
rh

e
a
d

s38417

0 50 100 150
0

0.01

0.02

0.03

0.04

Inputs

A
re

a
 O

v
e

rh
e

a
d

s38584

0 100 200 300 400
0

0.05

0.1

0.15

0.2

Inputs

A
re

a
 O

v
e

rh
e

a
d

b15
1

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Inputs

A
re

a
 O

v
e
rh

e
a
d

s5378

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

Inputs

A
re

a
 O

v
e

rh
e

a
d

s9234

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

Inputs

A
re

a
 O

v
e

rh
e

a
d

b21
1

Fig. 6: Area overhead upon replacement of circuitry using PUF-based logic with the labeled number of inputs. The different
colors represent the flip-flops whose inputs come from the individual PUF-based logic component.

terms of area and delay, and are robust against very powerful
reverse engineering attacks.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF under
award CNS-0958369, award CNS-1059435, and award CCF-
0926127, and by Samsung under award GRO-20130123.

REFERENCES

[1] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Computer and Communications Security (CCS),
pp. 148–160, 2002.

[2] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Design Automation Con-

ference (DAC), pp. 9–14, 2007.

[3] J. Guajardo, B. Škorić, P. Tuyls, S. S. Kumar, T. Bel, A. H. Blom, and
G.-J. Schrijen, “Anti-counterfeiting, key distribution, and key storage
in an ambient world via physical unclonable functions,” Information

Systems Frontiers, vol. 11, no. 1, pp. 19–41, 2009.

[4] T. Xu, J. B. Wendt, and M. Potkonjak, “Secure remote sensing and
communication using digital PUFs,” in Symposium on Architectures for

Networking and Communications Systems (ANCS), pp. 1–11, 2014.

[5] T. Xu, J. B. Wendt, and M. Potkonjak, “Matched digital PUFs for
low power security in implantable medical devices,” in International

Conference on Healthcare Informatics (ICHI), pp. 1–6, 2014.

[6] T. Xu, J. B. Wendt, and M. Potkonjak, “Digital bimodal function: an
ultra-low energy security primitive,” in International Symposium on Low

Power Electronics and Design (ISLPED), pp. 292–296, 2013.

[7] J. Zheng, D. Li, and M. Potkonjak, “A secure and unclonable em-
bedded system using instruction-level PUF authentication,” in Field

Programmable Logic and Applications, pp. 1–4, 2014.

[8] J. Zheng and M. Potkonjak, “DPUF: a reconfigurable IP protection
architecture for embedded systems,” in Symposium on Architectures for

Networking and Communications Systems (ANCS), pp. 1–2, 2014.

275

0 10 20 30 40 50
0

0.01

0.02

0.03

Depth

A
re

a
 O

v
e

rh
e

a
d

s38417

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

Depth

A
re

a
 O

v
e
rh

e
a
d

s38584

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Depth

A
re

a
 O

v
e
rh

e
a
d

b15
1

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Depth

A
re

a
 O

v
e
rh

e
a
d

s5378

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Depth

A
re

a
 O

v
e
rh

e
a
d

s9234

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Depth

A
re

a
 O

v
e
rh

e
a
d

b21
1

Fig. 7: Area overhead upon replacement of circuitry using PUF-based logic with the labeled circuit depth. The different colors
represent the flip-flops whose inputs come from the individual PUF-based logic component.

0 20 40 60 80 100
0

0.01

0.02

0.03

Dependent FFs

A
re

a
 O

v
e
rh

e
a
d

s38417

0 50 100 150
0

0.01

0.02

0.03

0.04

Dependent FFs

A
re

a
 O

v
e

rh
e

a
d

s38584

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

Dependent FFs

A
re

a
 O

v
e

rh
e

a
d

b15
1

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Dependent FFs

A
re

a
 O

v
e
rh

e
a
d

s5378

0 20 40 60 80
0

0.05

0.1

0.15

0.2

Dependent FFs

A
re

a
 O

v
e
rh

e
a
d

s9234

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

Dependent FFs

A
re

a
 O

v
e

rh
e

a
d

b21
1

Fig. 8: Area overhead upon replacement of circuitry using PUF-based logic that is affected by the labeled number of flip-flops.
The different colors represent the flip-flops whose inputs come from the individual PUF-based logic component.

[9] T. Xu and M. Potkonjak, “Robust and flexible FPGA-based digital
PUF,” in Field Programmable Logic and Applications, pp. 1–6, 2014.

[10] J. B. Wendt and M. Potkonjak, “Nanotechnology-based trusted remote
sensing,” in IEEE Sensors, pp. 1213–1216, 2011.

[11] J. B. Wendt and M. Potkonjak, “The bidirectional polyomino partitioned
PPUF as a hardware security primitive,” in Global Conference on Signal

and Information Processing (GlobalSIP), pp. 257–260, 2013.

[12] U. Ruhrmair, S. Devadas, and F. Koushanfar, Security based on physical

unclonability and disorder. Springer Verlag: New York NY, 2011.

[13] M. Potkonjak and V. Goudar, “Public physical unclonable functions,”
Proceedings of the IEEE, vol. 102, no. 8, pp. 1142–1156, 2014.

[14] F. Luellau, T. Hoepken, and E. Barke, “A technology independent
block extraction algorithm,” in Design Automation Conference (DAC),
pp. 610–615, 1984.

[15] S. Blythe, B. Fraboni, S. Lall, H. Ahmed, and U. de Riu, “Layout
reconstruction of complex silicon chips,” IEEE Journal of Solid-State

Circuits, vol. 28, no. 2, pp. 138–145, 1993.

[16] R. Nakagaki, T. Honda, and K. Nakamae, “Automatic recognition of
defect areas on a semiconductor wafer using multiple scanning electron
microscope images,” Measurement Science and Technology, vol. 20,
no. 7, p. 075503, 2009.

[17] Y. Ren, Y. Shi, and B.-H. Gwee, “A novel gate-level to behavior-level
conversion algorithm with high microcell identifiation rate,” in IASTED

International Conference, vol. 712, p. 138, 2010.

[18] R. Torrance and D. James, “The state-of-the-art in IC reverse engi-
neering,” in Cryptographic Hardware and Embedded Systems (CHES),
pp. 363–381, 2009.

[19] R. Torrance and D. James, “The state-of-the-art in semiconductor
reverse engineering,” in Design Automation Conference (DAC), pp. 333–
338, ACM, 2011.

[20] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in Design, Automation and Test in Europe (DATE), pp. 1277–
1280, 2013.

276

0 50 100 150 200
0

0.01

0.02

0.03

Affected FFs

A
re

a
 O

v
e
rh

e
a
d

s38417

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

Affected FFs

A
re

a
 O

v
e

rh
e

a
d

s38584

0 100 200 300 400
0

0.05

0.1

0.15

0.2

Affected FFs

A
re

a
 O

v
e

rh
e

a
d

b15
1

0 10 20 30 40
0

0.05

0.1

0.15

0.2

Affected FFs

A
re

a
 O

v
e
rh

e
a
d

s5378

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Affected FFs

A
re

a
 O

v
e
rh

e
a
d

s9234

0 100 200 300 400
0

0.05

0.1

0.15

0.2

Affected FFs

A
re

a
 O

v
e

rh
e

a
d

b21
1

Fig. 9: Area overhead upon replacement of circuitry using PUF-based logic that affects the labeled number of flip-flops. The
different colors represent the flip-flops whose inputs come from the individual PUF-based logic component.

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clock Cycles

F
ra

c
ti
o
n
 o

f
P

U
F

 I
n
p
u
ts

 C
h
a
ra

c
te

ri
z
e
d

Input size 8

Input size 16

Input size 28

(a)

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clock Cycles

F
ra

c
ti
o
n
 o

f
P

U
F

 I
n
p
u
ts

 C
h
a
ra

c
te

ri
z
e
d

Dependent FFs 8

Dependent FFs 16

Dependent FFs 32

(b)

10
0

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clock Cycles

F
ra

c
ti
o
n
 o

f
P

U
F

 I
n
p
u
ts

 C
h
a
ra

c
te

ri
z
e
d

Affected FFs 8

Affected FFs 16

Affected FFs 32

(c)

Fig. 10: Fraction of PUF inputs characterized in reverse
engineering an obfuscated b12 benchmark circuit.

[21] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures
in a sea of bit-level gates,” in International Symposium on Hardware-

Oriented Security and Trust (HOST), pp. 67–74, 2013.

[22] K. Nohl, D. Evans, S. Starbug, and H. Plötz, “Reverse-engineering
a cryptographic RFID tag,” in USENIX Security Symposium, vol. 28,
2008.

[23] D. Nedospasov, J.-P. Seifert, A. Schlosser, and S. Orlic, “Functional
integrated circuit analysis,” in International Symposium on Hardware-

Oriented Security and Trust (HOST), pp. 102–107, 2012.

[24] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of
ICs for piracy prevention and digital right management,” in Interna-

tional Conference on Computer-Aided Design (ICCAD), pp. 674–677,
2007.

[25] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using
reconfigurable logic barriers,” IEEE Design and Test of Computers,
vol. 27, no. 1, pp. 66–75, 2010.

[26] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Design Automation Conference (DAC), pp. 83–89,
2012.

[27] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis
of integrated circuit camouflaging,” in Computer and Communications

Security (CCS), pp. 709–720, 2013.

[28] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Watermarking
techniques for intellectual property protection,” in Design Automation

Conference (DAC), pp. 776–781, 1998.

[29] C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit, and
J.-P. Seifert, “Breaking and entering through the silicon,” in Computer

and Communications Security (CCS), pp. 733–744, 2013.

[30] “Implementation of security in Actel’s ProASIC and ProASICPLUS
flash-based FPGAs.” http://www.actel.com/documents/Flash Security
AN.pdf, 2003.

[31] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-
mark circuits and a target translator in FORTRAN,” in International

Symposium on Circuits and Systems (ISCAS), pp. 663–698, 1985.

[32] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in International Symposium on Circuits

and Systems (ISCAS), pp. 1929–1934, 1989.

[33] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Design and Test of Computers, vol. 17,
no. 3, pp. 44–53, 2000.

277

