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Abstract—The proliferation of mobile ubiquitous devices faces
a hurdle in the form of high resource consumption rates that re-
strict longevity. Several low-power devices and application designs
and optimization techniques have been proposed. Simultaneously,
energy harvesting technologies are increasingly being viewed as
a complementary technique to drive down resource consumption
rates and even achieve self-sustenance. Towards this end, we
propose a foot-strike powered harvester array composed of a
novel high-energy density material called Dielectric Elastomers.
To compensate for their control parameter sensitivity, we propose
an adaptive closed-loop control algorithm based on general char-
acteristics of human gait. From experimentally collected datasets
of human plantar pressure and detailed characterization of DE
behavior, we show that our algorithm yields enough accuracy to
produce upwards of 85% of the maximum energy harvestable by
the DE array. We also show that, in many cases, this is sufficient
to fully drive low-power mobile ubiquitous applications.

Keywords—Energy Harvesting; Mobile Devices, Self-Sustaining
Devices, Dielectric Elastomer Generators

I. INTRODUCTION

The past decade has lay witness to the manifestation
of several ubiquitous mobile applications in the domains of
healthcare, military, sports, entertainment and security. Fuelled
by advances in low-power electronics and miniaturization,
wireless standards, sensor technologies and battery power
management, this proliferation of mobile-centric ubiquitous
computing has contributed substantially to the social media
revolution, increased productivity, improved communication
and our overall quality-of-life. Sensor integrated smartphone
prototypes, as well as those involving mobile peripheral or
standalone devices equipped with arrays of sensors, have
pushed on to yield a variety of potentially transformative
applications.

Yet, resource consumption rates remain a primary concern
for device portability, longevity, and ultimately for adoption
rates. Driving a plethora of sensors and the related com-
munication requires a lot of power, while battery energy
densities continue to improve marginally [1]. As a result,
several effective solutions have been proposed to lower en-
ergy consumption rates towards small batteries and/or longer
lifetimes. Furthermore, as novel low-power designs at the
component and system levels are proposed and standardized,
major obstacles to ubiquitous computing continue to be eroded.
As a result, the levels of energy currently achievable via
complementary energy harvesting techniques are becoming

enticing enough to make self-sustained operation an achievable
goal. However, in the context of mobile applications, although
ambient energy harvesting has been explored as a means to
driving the platforms, challenges remain both in terms of
usability, and the quantity and rate of energy production.

In this paper we introduce novel harvesting technique to
alleviate these challenges and help bridge the gap to self-
sustained performance in the context of mobile wearable
devices. The underlying harvester technology for the proposed
system is Dielectric Elastomers (DEs), a promising new class
of high energy-density rubber-like materials that possess the
ability to behave as energy generators, actuators and sensors.
However, owing to its material properties and the fact that it is
an electrostatic transducer, DE performance is very sensitive to
its control parameters. Further complicating control, is the fact
that its material properties, and consequently its transduction
transfer function, is non-linear. Yet, its promise of a substantial
increase in energy yield combined with its unobtrusive flexible
behavior, makes it a great candidate for parasitic human energy
scavenging.

Specifically, given that foot strikes are capable of producing
large amounts of energy [1], we propose that this emerging
class of harvesters be used to scavenges the energy expended
during foot strikes, so as to power ubiquitous applications that
involve human locomotion. To maximize energy throughput
we present a novel closed loop control scheme that enlists the
user’s gait characteristics to adaptively fine tune the harvester’s
control parameters, thereby maximizing the net energy output.
Since the non-linear nature of the transfer function makes real-
time parameter estimation infeasible, we apply statistical tech-
niques to relate a user’s gait characteristics to DE transduction
output, thereby enabling maximal energy output in a statistical
sense, while achieving it in a computationally feasible manner.
We validate our algorithms based on experimentally collected
datasets of the force generated by foot strikes of multiple
subjects, as well as an experimental characterization of DE
behavior for the proposed transducer configuration. Our eval-
uation shows that a number of target applications may achieve
self-sustained operation based on our proposed techniques.

II. RELATED WORK

In the wearable systems and body area networks commu-
nity, it is generally agreed upon that energy harvesting poses
an important challenge and opportunity for self-sustenance.
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Fig. 1: Linear correlation coefficients between the maximum
pressures observed at each pair of sensors.

Proposed human-powered transduction alternatives span heat
transfer from the skin, vibration from foot strikes, movement
of knee joints, inertia from backpacks and change in blood
pressure. A wide array of human motion has been found
suitable for exploitation including cranking, shaking, pushing,
pumping, pulling as well as the isometric forces of squeezing
and pushing [1], [2]. However, human gait offers easy pickings
as the most innocuous source of human power for transduction,
resulting in a long trail of harvesting designs and related
patents going back to the mid 1920’s [3]. The authors of [3]
describe two large piezoelectric transduction elements which,
when embedded into the shoe sole, is capable of producing
10mW of output and are inconspicuous to the wearer. A shoe
integrated piezoelectric transducer with hydraulic-amplified
input is also highlighted, which produced up to 675mW while
adding significant heft to the shoe, making it unsuitable from
the perspective of adoptability.

DEs are a relatively new entrant to the class of miniatur-
ized generators. An excellent survey of the material proper-
ties relevant to its transduction mechanism, various proposed
transducer configurations, capabilities in comparison to other
common transducers, recent applications as well as operational
boundaries and lifetime issues are detailed in [4]. We note
that DEs require charging at high voltage so they may achieve
their output potential; However self-priming circuits have been
proposed that use an inverse charge pump to convert some of
the DE voltage boost into charge, incrementally increasing the
source voltage from 10V to the kV range [5]. Finally, adaptive
control of DEs has been proposed in the context of actuation
as a means to account for its non-linear properties, however to
the best of our knowledge, we are the first to propose a energy-
maximizing adaptive control technique for DE generators.

III. BACKGROUND

A. Target Applications

Over the past decade, a number of custom multi-sensory
devices have been prototyped towards low-power mobile ubiq-
uitous computing. For example, the authors of [6] built a
wearable activity recognition device with a power require-
ment of 43mW. Finally, a human balance monitoring system

Fig. 2: Dielectric elastomer generator transduction cycle.

known as Hermes [7] was recently proposed, that measures
foot plantar pressure via a multi-sensory array comprised of
ninety-nine passive resistive pressure sensors. Hermes requires
183mW for operation in fully active mode and 45mW in
power-efficient mode. In the latter case, the radio is assumed
to transmits 25% of the time and sniff over the rest of the
duration. Also, semantically driven subsampling techniques [8]
are assumed to be applied, that lower the required sampling
power without significantly sacrificing sensing fidelity. In lieu
of the aforementioned applications, we conclude that 45mW
is a suitable target required to achieve self-sustenance in the
related classes of mobile ubiquitous devices.

B. Human Gait

Gait is defined as the way in which movement is achieved
by humans with their limbs, such as walking, running, hopping,
etc. The gait cycle, or stride, is a functional unit of gait defined
as a single sequence of functions of one limb. It is divided into
two phases, the stance phase, when the limb is in contact with
the ground, and the swing phase, when the limb is in the air for
advancement. Although gait characteristics vary across people,
human locomotion, but its very nature produces commonalities
across people. One such commonality is that spatial pressure
profile across the sole of the foot exhibits significant local
correlation. However, the amount of correlation varies with
time (during a single stride) and space, contributing to the
uniqueness of a subject’s gait. Figure 1 illustrates the pair-wise
linear correlation coefficients between the maximum pressure
observed by sensors of the Hermes platform, during the stance
phase of a particuar subject. The sensors are organized from
heel to toe on the x-axis, and for a sensor, the sensors on
the y-axis are organized by their distance from it. Clearly, we
observe high levels of local correlation at the top of the map.
Weak correlation also exists between the heel and forefoot.
It is precisely these spatial relationships that we will take
advantage of to accurately predict the control parameters of
the DE harvesters.

C. Dielectric Elastomer Generators

1) Material Properties: DEs are deformable yet incom-
pressible insulating polymer films that can be built from
a variety of materials. The most commonly used materials
are acrylics and silicones due to their high electric permit-
tivity (εr), operational boundaries, elasticity and relatively
low mechanical and electrical losses. As described in [4],
their relatively high elastic energy density (ranging from 5
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to 40 times the energy density of piezoelectrics) means that
they can store more energy when deformed, for the same
amount (mass and volume) of transducer material, yielding
more productive transducers. At the same time, they are quite
soft compared to piezoelectrics, making them less intrusive
and more comfortable to users. With electric permittivity and
resistivity, DEs make for remarkable variable capacitors.

2) Transduction Mechanism: When operating in generator
mode, electrical charge must be added to the elastomer surface
when it is stretched. On release of the mechanical pressure,
the elastic forces in the DE relax and are converted into
electrostatic force. This may be conceptualized as an increase
in electrical energy in the film when it relaxes, as like charges
on the same surface are brought close together, and opposite
charges are drawn apart. The conversion continues until the
material completely relaxes, or, the increased electrostatic
forces are able to maintain the film in a stretched state,
albeit at a lower stretch. This transduction cycle is expressed
diagrammatically in Figure 2.

If the length and width of the elastomer film each increase
by a factor of λ when stretched, the area will have increased
by a factor of λ2. As an incompressible material, the volume
must stay constant to cause a decrease in thickness by a factor
of λ2, leading to an increase in capacitance by a factor of
λ4 (equation (1b)). The reason behind the high energy density
of DEs is underscored by equations (1b) thru (1d), where Q,
V, and ΔEDE are the applied charge, applied voltage and
net energy output of the DE, respectively. If it fully relaxes,
the electrical energy in the film will have increased to a
factor of λ4 of the input electrical energy. This is in contrast
to a maximum λ2 factor increase in energy in conventional
electrostatic transducers, a limitation of their rigid structure.
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IV. TRANSDUCER CONFIGURATION AND TRANSDUCTION
MODEL

Figure 3 shows the bulge transducer configuration that we
propose for our application. It involves a thin acrylic layer, a
little larger than the requisite active DE area, with a hole in
its center to accommodate the active area. The DE film is pre-
stretched and laminated onto the acrylic backing. Deformation
in the film is brought about by a driver component that is
affixed to the insole of the shoe at the targeted DE location.
This yields a bulge deformation in the DE when pressure is
applied, with a proportionate reduction in material thickness.
A harvester will have a circular active area, 1cm in diameter,
with a DE film that is 5mm thick and prestretched to 400%
by 400%. The harvesters are made of the 3M manufactured
VBH4905 acrylic DE, the material properties for which are
available in [9].

Fig. 3: Proposed DE transducer configuration.

To compute the net output energy of such a transducer, we
modeled its stress-stretch behavior based on the direct trans-
duction bulge-configuration, and its relaxation behavior, while
charged, based on the detailed transduction model outlined
in [10], modified to suite the bulge configuration. Also, DEs
exhibit a non-linear relationship between the applied pressure
and the resulting deformation; Therefore, we experimentally
measured and fit this relationship, for the proposed configura-
tion, to the Ogden hyper-elastic model.

Based on these models and our plantar pressure datasets,
we determined that charging each DE in the array beyond
8kV would produce sub-optimal energy outputs owing to
incomplete relaxation at the end of the transduction cycle. We
further concluded that, in order to enforce operation of the DE
within its mechanical operational boundaries and ensure user
comfort by preventing over 6mm of compression, we would
require at least 9 layers of DE film per transducer. We assume
these to hold as the DE operational parameters. Finally, given
that DEs can operate as sensors and generators, and that they
can be charged at a low voltage with low energy requirements
if pressure measurements are desired, colocatio of pressure
sensors and harvesters can be trivially assumed.

A. System Design and Optimization Overview

The proposed harvester platform model is illustrated in
figure 4. Equipped with a few pressure sensors to guide DE
control parameter estimation, the platform is comprised of an
array of DE harvesters placed at some subset of pedar mapping
locations. It also includes an energy store such as a battery or
a capacitor, that stores the harvested energy and powers the
platform as well as the target application. Processing of the
sensor samples towards DE control parameter estimation may
be offloaded to the microcontroller of the target device.

Energy output is maximized if the harvesters are operated
when maximum mechanical pressure is applied to them. It
follows that maximum energy may be harvested during the

Fig. 4: Harvester Platform Model.
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Fig. 5: Energy profiles of two harvesters with relatively large
energy outputs. Valid predictions for real-time control are
shown in black, while invalid ones are shown in red.

stance phase, when plantar pressure will be applied to the
harvesters. Hence, we focus on this phase as the temporal
domain for real-time control related sampling and energy
harvesting, and assume harvester discharge to occur at the end
of it.

The extent to which energy is harvested from a DE, de-
pends on the system knowing or predicting when the maximum
stretch is reached for the step (i.e. the moment the charge
should be applied). Unfortunately, different users will have
different stepping patterns and pressure profiles across their
soles. Furthermore, ambulation timing and step pressure varies
across the steps of the same user. Thus, in order to maximize
the total energy collected over the DE array, the system
must be able to measure and/or predict when each harvester
will reach maximum stretch during a given step. Predicting
these measurements requires knowledge of harvester location,
pressure distribution, and step timing. Consequently, we posit
that we can minimize error if this prediction is assisted, in real-
time, by some pressure sampling data. The system must utilize
a set of sensors measurements that are able to predict with high
accuracy, the timing of maximum stretch at the harvesters.

Similarly, placement of the harvesters is not as simple as
choosing the location with the highest average pressure. To
achieve the final goal of maximizing aggregate net energy
output from the DE array, we must consider all aspects of the
individual harvesters that will contribute to their net output:
(i) What is the expected energy output for the harvester; (ii)
What is the expected prediction error for the harvester, and,
(iii) What is the energy cost of prediction for the harvester?

Our methodology for coordinated sample selection, har-
vester placement and scheduling is executed in two steps.
Given a training dataset, the first builds an exhaustive pool
of harvester charge-timing predictors from samples at all
locations on the sole and over all epochs of the stance phase.
The second step calculates a subset of harvesters, while simul-
taneously allocating samples to predict their charge timing, in
a manner that collectively maximizes the expected aggregate
net harvested energy over the dataset.

Algorithm 1 Calculate AEMHPs and corresponding predictors
(ILP)
Constants: pe(si, hj), the average harvested energy at harvester
hj based on predictions from sample si, C, the energy cost of
each sample, and N the number of harvesters
Integer Variables: SiHj , an indicator for whether sample si
will control harvesting at hj , and Si, an indicator for whether
sample si will be used

1: Max:
∑
si

(∑
hj

[pe(si, hj).SiHj ]− C.Si

)
2:
∑
si

SiHj ≤ 1 for each hj

3:
∑
hj

SiHj ≤ N.Si for each si

4: 0 ≤ Si ≤ 1 for each si
5: 0 ≤ SiHj ≤ 1 for each si and hj

B. Predicting Harvester Energy Profiles

In order to accurately predict the optimal charge timing
of the DE harvesters, we enlist the local correlation property
of plantar pressure. Based on this property, an aptly placed
sensor, sampling at the right, time should be able to accu-
rately predict the timing of a number of harvesters in its
neighborhood. Towards this end, we construct of a pool of
robust statistical models between sensor samples and temporal
profiles of harvester output. Here, we define sample si,j as a
single pressure measurement of the sensor i sampled at the
epoch j from the start of a stance phase. Similarly, yield hp,q

is the net energy output of harvester p after applying a charge
at epoch q and discharging at the end of the stance phase.
For a stride, the models corresponding to a sample may be
used to predict the entire temporal profile of a harvester’s
output, based on the sample value. Consequently, a sample’s
optimal charge timing prediction would be the timing when
the predicted profile achieves maximum.

Note that our goal isnt to accurately predict the temporal
profile. Figure 5 illustrates the temporal profiles for 2 har-
vesters from a single stride by a subject. Harvester 78 sees
minuscule changes in the energy scavenged between epochs
28 and 32, however, harvester 17 sees more variance around
its peak output. Therefore, the quality of a predictor is not
quantified by the number of epochs it is off by in predicting the
instant of maximum stretch for the DE. Neither is it based on
the error in its predicted value of maximum energy harvestable.
Rather, the error in the predictor is defined by the difference
between the amount of energy that will be scavenged, if its
timing prediction is adhered to, and the actual maximum
energy that can be harvested for the step. This key insight
expands the solution space substantially, thereby reducing the
complexity of the problem. Finally, while creating the pool of
models, it is crucial that we only consider those models where
the sensor sample is seen before the predicted yield, i.e. j <
q. Obviously, hindsight is irrelevent in the context of real-time
control.

In order to build a robust and effective statistical model
between a valid <sample, yield> pair, we must consider,
(i) the non-linearity in the relationship between samples and
yields despite a high correlation in the pressure observed at
the locations of the corresponding sensor and harvester, (ii)

2014 IEEE World Forum on Internet of Things (WF-IoT)

471



Algorithm 2 Calculate AEMHPs and corresponding predictors
(Greedy)
Input: pe(si, hj), the average harvested energy at harvester hj

based on predictions from sample si, and C, the energy cost
of each sample
Output: AEMHPr, the AEMHP predictor set of se-
lected samples, and AEMHP (si) , the AEMHP sets
of harvesters for which si will be the predicting sam-
ple

1: he(hj) ← 0 ∀ harvesters hj

2: loop
3: se(si) ← 0 ∀ samples si
4: for all si not in AEMHPr do
5: se(si) ←

∑
hj |pe(si,hj)>he(hj)

[pe(si, hj)− he(hj)] - C

6: sk ← sample with maximum value in se
7: if se(sk) ≤ 0 then
8: Break
9: else

10: Add sk to AEMHPr
11: for all all hj s.t. pe(sk, hj) > he(hj) do
12: Remove hj from AEMHP (sl) where sl cur-

rently covers hj , if he(hj) > 0
13: Add hj to AEMHP (sk)
14: he(hj) ← pe(sk, hj)
15: end for
16: end if
17: end for
18: end loop
19: return AEMHPr and AEMHP

the temporal variability inherent in the samples, and, (iii) the
delay between samples and yield.

In considerations of these issues, we enlist non-parametric
kernel-regression to model the <sample, yield> relationships.
To account for its non-linearity, the sample value is treated as
a continuous independent variable whose probability density
is computed with a gaussian kernel. The sample epoch is
treated as an ordered factor to explain the temporal variability
in the sample, and its probability density is computed with
the ordered kernel. Finally, the yield epoch accounts for the
sample-yield delay, and is the other ordered factor in the
model. The kernels are combined in a generalized product
kernels approach, with kernel bandwidths of 2000, 0.25 and
0.25 respectively. These bandwidths were pre-determined to
produce high accuracy models for our datasets. While the
models are computationally expensive to produce, we note
that this is done offline. The subsequent prediction required
for real-time control only involves a few table lookups and
few simple arithmetic operations. By repeating this prediction
at each stride, our proposed control algorithm will result in
charging schedules that are adaptive, depending on sensor
pressure measurements, and generated in real-time. At each
stride of the user, the pressure is sampled to generate a distinct
harvesting schedule.

C. Aggregate Energy Maximizing Harvester Placement (AE-
MHP)

While we are now equipped with models that can predict
the charge timing for individual DEs, it is still unclear as to

Fig. 6: Average maximum energy profiles for each of the
datasets along with the output of the harvester placement
algorithm. Non-selected harvesters have been grayed out. The
number of samples dedicated to the real-time control of the
selected harvesters are 13, 10 and 11, respectively.

which samples will drive each harvester. While we will observe
local correlations, the exact spatial nature of these correlations
will vary among users. Aside from this, we must also consider
that some harvesters generally see insufficient input pressure
and produce insignificant amounts of energy, and a few others
may be too variable to predict in a manner that will result
in a net positive energy output. There is also a cost involved
in prediction. While each harvester can be paired up with the
sample that single-handedly maximizes its expected net energy
output, a better configuration may be possible if the cost of
sampling is taken under advisement and multiple harvesters are
predicted by a single sample, even if the individual predictions
are marginally lower than the best possible sample-harvester
pairings.

With this goal of simultaneously maximizing the net energy
output, we present an ILP formulation that will ensure max-
imum expected aggregate net energy output (algorithm 1).
Due to its computationally-intensive nature, we also formulate
a greedy algorithm that runs in polynomial time and produces
near optimal results (algorithm 2). Judging each sample on
the average net energy that it assists a harvester in producing,
at each iteration the algorithm selects the sample that offers
the best improvement over the covering set selected so far. In
other words, a sample’s merit is measured as the sum, over all
harvesters, of improvements in energy harvested based on its
predictions. The sample’s merit is also penalized for the cost of
sampling. At each iteration, the sample with the highest merit
is selected into the covering set. The algorithm ends when no
sample offers an improvement over the covering set selected
thus far.

V. EVALUATION

So we may arrive at the net energy output by the DE
array for a given spatio-temporal plantar pressure profile, we
experimentally characterized the stress-strain behavior of a
DE harvester in the proposed transducer configuration. Next,
we evaluated the system performance with experimentally
collected foot plantar pressure datasets from 3 subjects. The
first two datasets correspond to the gait of lighter individuals,
one male and one female. The third dataset corresponds to a
heavier male individual. Each of the datasets offer several steps
worth of data at each of the ninety-nine pedar locations. This
allows us to derive harvester performance at all harvesters and
apply the proposed harvester placement, sample selection and
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(a) (b) (c)

Fig. 7: Charts (a)-(c) refer to the maximum possible vs. achieved aggregate net energy output over all steps of each of the
datasets.

real-time control algorithms, thereby evaluating the aggregate
net energy output. As these algorithms involve training, we
divide each dataset into a training subset comprised of 80% of
the data and a testing subset comprised of 20% of the data.

VI. RESULTS

Figure 6 presents the results of the harvester placement
algorithm for each of the 3 datasets. To start off, it is clear
that the users wore the system on their left foot. It also appears
that user 3 is more flat-footed than the others. The figures gray
out harvester that were not shortlisted into the DE array. Their
locations mostly correspond to the arch of the foot where little
input pressure with significant variance is seen. In most of
these cases, this makes profile prediction difficult, resulting
in net losses in energy output. In a few cases, the energy
scavenged is too little compared to the sampling cost required
to drive it. Finally, only a few samples (between 10 and 13)
were required by each dataset to cover what appears to be a
vast majority of harvesters in the DE array.

However, the question remains as to whether basing our
decision on expected net energy output will results in large
variances over the course of a walk. As we see from figure 7,
little variance is seen over a majority of steps. However, some
of the steps in both the training and testing datasets are a result
of the subject turning around. Such steps are infrequent and
provide insufficient data for the training algorithms. Due to
the inadequate representation and significantly higher variance
during such steps, prediction performance drops. As expected,
the performance over the testing subsets (the last 20% of
steps) is a bit lower compared to performance over the training
subsets. On average, we observe a 10-15% energy loss over
the testing subset owing mostly to prediction inaccuracies.

TABLE I: Performance Comparison of Foot Strike Energy
Harvesting Systems.

Scavenger Net Power Net Power Output
Mechanism Output(mW) Open Loop (mW)

Piezoelectric. 10 -
DE Array (User 1) 46.2 28.6
DE Array (User 2) 48.7 19.9
DE Array (User 3) 60.8 36.8

Finally, table I compares the average aggregate power
output of our proposed system for each of the datasets, to a
competing technologiy [1] and an open-loop control algorithm.

The latter algorithm involves estimating the charge timing of
each harvester as the median, over the training dataset, of the
charge times when its net energy output is maximized. Owing
to the superior material properties of DEs and the accuracy
of our algorithm, we perform substantially well compared
to the piezoelectric-driven system. Our closed-loop control-
parameter estimation system also performs significantly better
than the open-loop algorithm. Furthermore, the 45mW goal set
for self-sustenance of low-power mobile ubiquitous devices, is
observed to be achievable for each of our subjects.
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