
Hidden in Plain Sight
Classifying Emails Using Embedded Image Contents

Navneet Potti∗
University of Wisconsin - Madison

nav@cs.wisc.edu

James B. Wendt
Google

jwendt@google.com

Qi Zhao
Google

zhaqi@google.com

Sandeep Tata
Google

tata@google.com

Marc Najork
Google

najork@google.com

ABSTRACT
A vast majority of the emails received by people today are machine-
generated by businesses communicating with consumers. While
some emails originate as a result of a transaction (e.g., hotel or
restaurant reservation confirmations, online purchase receipts, ship-
ping notifications, etc.), a large fraction are commercial emails pro-
moting an offer (a special sale, free shipping, available for a limited
time, etc.). The sheer number of these promotional emails makes
it difficult for users to read all these emails and decide which ones
are actually interesting and actionable. In this paper, we tackle the
problem of extracting information from commercial emails promot-
ing an offer to the user. This information enables an email platform
to build several new experiences that can unlock the value in these
emails without the user having to navigate and read all of them. For
instance, we can highlight offers that are expiring soon, or display
a notification when there’s an unexpired offer from a merchant if
your phone recognizes that you are at that merchant’s store.

A key challenge in extracting information from such commercial
emails is that they are often image-rich and contain very little text.
Training a machine learning (ML) model on a rendered image-rich
email and applying it to each incoming email can be prohibitively
expensive. In this paper, we describe a cost-effective approach for
extracting signals from both the text and image content of commer-
cial emails in the context of Gmail, an email platform that serves
over a billion users around the world. The key insight is to leverage
the template structure of emails, and use off-the-shelf OCR tech-
niques to obtain the text from images to augment the existing text
features offline. Compared to a text-only approach, we show that
we are able to identify 9.12% more email templates corresponding
to ~5% more emails being identified as offers. Interestingly, our
analysis shows that this 5% improvement in coverage is across the
board, irrespective of whether the emails were sent by large mer-
chants or small local merchants, allowing us to deliver an improved
experience for everyone.

∗Work done while at Google.

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY-NC-ND 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186167

CCS CONCEPTS
• Information systems → Email; Wrappers (data mining); • Ap-
plied computing→ Optical character recognition;

KEYWORDS
Information extraction; wrapper induction; email
ACM Reference Format:
Navneet Potti, James B. Wendt, Qi Zhao, Sandeep Tata, and Marc Najork.
2018. Hidden in Plain Sight: Classifying Emails Using Embedded Image
Contents. In WWW 2018: The 2018 Web Conference, April 23–27, 2018, Lyon,
France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3178876.
3186167

1 INTRODUCTION
Nearly half the world’s population uses email today, sending and
receiving over 269 billion emails a day [18]. The vast majority
(about 90%) of these are machine-generated emails originating from
businesses, as email has become the dominant medium for noti-
fications (e.g., purchase receipts, social network updates, finan-
cial statements) as well as promotions (e.g., marketing campaigns,
newsletters, abandoned shopping cart emails).

Consequently, users are spending a growing fraction of their
day managing emails [9], and complaints about email overload
abound. Researchers have risen to the challenge of improving the
efficiency of email management in a number of ways, ranging from
improving email search [5] and classification [16], to predicting
user actions [10] and auto-suggesting responses [19]. There have
also been efforts towards extracting useful information from emails
[36] as well as surfacing it through intelligent personal assistants.

A large fraction of consumer emails is made up of promotional
offers from businesses. The sheer volume imposes a burden, and
users may not be able to read all of these emails. If we are able to
extract the relevant details from promotional email, our hypothesis
is that we can unlock significant value for our users. For instance,
if we know that you recently received a coupon offering a 20%
discount from a store and the personal assistant on your phone
detects that you are visiting that store, it can notify you of the
coupon present in your email so you can take advantage of it even
if you hadn’t read it and remembered to use it at the store. Simpler
experiences such as notifying you when you have a big discount
or free shipping available from a store that you often shop at can
also unlock more value from promotional emails for our users.
Enabling such experiences requires us to first identify that a given
commercial email is promoting an offer. Once we are able to identify

https://doi.org/10.1145/3178876.3186167
https://doi.org/10.1145/3178876.3186167
https://doi.org/10.1145/3178876.3186167

Figure 1: Screenshot of promotional email where the key in-
formation is in the image, and is readily visible to a human,
but a text-only analysis will not easily yield that the email
is about a special sale.

such emails, we may extract other relevant fields like coupon codes,
expiration dates, and offer details.

While information extraction from document corpora such as
web pages is a well-studied problem [8, 28], the case of emails con-
tinues to be challenging because of privacy, volume, and latency
considerations. These issues are rendered considerably worse in
the case of promotional emails due to their typically image-heavy
designs. Indeed, for many such offer emails, most of the details
we would like to extract are only present in the image itself. The
screenshot in Figure 1 shows such an email received by one of
the authors of the paper containing a large image, but very little
text in the email. The information in images is clearly visible to
the intended human recipient, but current information extraction
techniques based only on text are blind to writing in images. While
sophisticated large-scale email campaigns make use of Microdata
markup [32] and alt-text attributes [31] in HTML surrounding the
image, many small businesses do not. Furthermore, the markup
often contains far less detail than the actual image itself. We be-
lieve that unlocking the value in promotional emails irrespective of
the sender’s sophistication is important to providing a good user
experience.

A key constraint that informs our solution is that it needs to be
cost-effective at the scale of many billions of emails processed daily.
Consequently, a straightforward approach that simply runs the
images in each email through an expensive ML model to determine
if this is an offer would not be practical for a planet-scale free email
service like Gmail.

Our solution leverages template induction techniques [3, 4] that
have previously been described in the literature to radically bring
down the cost of OCR analysis and extraction from images. We
identify images that are commonly included in templates in an
offline process, and extract text from them using an off-the-shelf
Optical Character Recognition (OCR) engine. We then use the ex-
tracted text to augment existing text features used in the text-only
ML models. Compared to the naive approach, our OCR analysis as

well as inference using our ML models happens in an offline job
that is used to classify a template as an offer. At runtime, an email
that matches a known set of templates can cheaply be classified as
an offer. While this approach requires us to wait until we discover
templates over emails before building extractors, it also produces a
significant improvement in precision and recall.

This paper makes the following contributions:

• To our knowledge, this is the first description of the problem
of identifying commercial offers in emails by leveraging
image content.

• We outline several design choices made to solve this prob-
lem in a cost-effective manner: a) we leverage the template-
structure of emails to identify image-rich emails, b) we use
off-the-shelf OCR engines to extract text rather than train
models directly on images or rendered emails, and c) we
classify the templates offline so that online cost is limited to
simply matching an email to a template rather than running
inference on an expensive ML model.

• We present the results of evaluating our approach on emails
received by users of Gmail and show that our approach
yields 9.12% more templates being identified as offers at
the same precision level. These templates could not have
been identified as offers using simpler approaches that only
leveraged text.

2 EMAIL CLUSTERING AND
CLASSIFICATION

In this section, we describe the existing framework in which we
classify and extract class-specific text fields from emails. In the
following section, we describe how we extend this pipeline to in-
corporate image content.

The existing pipeline consists of three phases, as illustrated in
Figure 2. First, we cluster emails together such that the resulting
clusters contain documents that are likely instantiated from the
same original template. Second, we learn classifiers for various
semantically meaningful verticals such as purchase receipts, hotel
reservations, and offers. Finally, we aggregate the results of email-
level classification to learn a template-level classifier. At serving
time, as shown in Figure 3, we simplymatch an email to the template
to determine its category.

2.1 Template Induction
The vast majority of emails are machine-generated by populating a
generic template with user-specific details. For instance, an online
retailer may generate shipping confirmation emails by filling out a
generic template with the particular products purchased by the user
as well as shipping date and address. By associating such emails
with the templates they belong to, we can improve the scalability
and accuracy of the subsequent classification and extraction phases.

Conventional approaches to document labeling train multiple
binary classifiers and apply the learned models to incoming docu-
ments online. This would be computationally challenging, given
the aforementioned estimated global transmission of 269 billion
emails per day. Templates, on the other hand, remove the need
for online feature extraction and model inference altogether, by

Black Friday! 20% off all purchases!

Black Friday! 10% off all purchases!

Vertical
Classification

Your Monday afternoon trip receipt

Template
Induction

Black Friday! (.+)% off all purchases!

Template 1: Offer

Your (.+) trip receipt

Template 2: Receipt

Black Friday! (.+)% off all purchases!

Template 1

Your (.+) trip receipt

Template 2

Receipt

Not Receipt

Offer

Offer

Your Tuesday night trip receipt

Receipt

Offers

Receipts

Training
Labels

Unsupervised
Learning

Supervised
Learning

Manual
Parsers

Your Sunday morning trip receipt

Figure 2: Training pipeline for email vertical classification.

Black Friday! 15% off all purchases!

Template 1 Template 2

Black Friday! (.+)% off all purchases! Your (.+) trip receipt

Offer Receipt

RegEx
Match

Template 1: Offer

Table
Lookup

Figure 3: Serving pipeline for email vertical classification.

replacing these functions with a simple lookup for an email’s cor-
responding template and annotations (e.g. class, extraction rules,
etc.). Templates represent thousands to millions of emails, and the
cost of inference is amortized across all emails of a given template.

Templates serve to improve the accuracy of email annotations
through aggregation. For example, in [34], multiple high-precision
low-recall classifiers were applied to all emails in each template
cluster. If a majority of emails are labeled as one class, then all emails
in the cluster can be labeled as such, correcting occasional errors
made by the email-level classifier by leveraging the block-structure
imposed by the templates.

Existing techniques for template induction use a variety of sim-
ilarity measures (either explicitly or implicitly) and range from
sender-based clustering followed by subject regular expression
deduction [3] to body clustering techniques that compare the un-
derlying HTML structure of the documents [4].

In this work, we employ the techniques of the sender-subject
clustering technique mentioned above. Emails are first partitioned
by sender. Within each sender cluster, we identify a small set of
subject regular expressions by replacing infrequently occurring
terms in the subjects with wildcards.

Online, a matching template is found for an email by querying a
table keyed by sender email addresses containing lists of subject
regular expressions. The sender along with the longest matching
subject regular expression that matches the incoming email is the

key to the matching template. For example, the shipping confir-
mation emails from an online retailer may have subjects matching
the regular expression Your order of .+ has shipped!, with the wild-
card replaced by the specific product(s) purchased. All emails from
this sender with a subject that match this regular expression are
therefore assigned to this template.

Candidate clusters become templates if they contain emails be-
longing to at least k different users, where k is defined by policy.
This approach follows the same objective as the k-anonymization
process presented by Di Castro et al. [11]. This requirement has
the dual benefits of increasing the quality of recovered templates
as well as meeting our commitment to user privacy.

2.2 Vertical Classification
2.2.1 Training Data. Our system currently supports a diverse

set of verticals, including travel, hotels, bills, receipts, offers and
events. For a small number of high-volume sender domains, we
manually develop and maintain a set of heuristics in a rule-based
classification and information extraction system. While the actual
extractions are not the focus of this paper, the manually assigned
labels are used as the ground truth labels to train the classifiers for
each of the verticals.

While these manual rules (usually comprised of regular expres-
sions and XPath queries) are highly precise, they incur significant
development and maintenance overhead. Furthermore, they are
brittle since changes to the original template require manual up-
dates to the rules. Our goal is to use these high-precision, low-recall
labels to train a high-recall classification system without sacrificing
much precision. In other words, given an annotated corpus of se-
lectively labeled [21] emails from high-volume senders, we would
like to generalize our classification capability to the “tail” sender
domains that have too low a volume to justify manual effort.

We uniformly sample a fixed number of training samples (say, a
few hundred) from each template along with their manual labels. In
contrast to sampling from all manually labeled emails, this approach
has the advantage that the low-volume sender domains are not
underrepresented in the training data. We create a test set similarly,
ensuring that a template which was chosen for the training set

is excluded to ensure there’s no template-level overlap between
the training and test sets. This allows us to verify that the model
isn’t simply memorizing common features in the template and can
actually generalize to new templates.

2.2.2 Template-level Classification. Since an email may belong
to multiple verticals (e.g., an air ticket and hotel reservation may
be included in the same email), we train a binary probabilistic
classifier for each vertical. We choose this instead of a multilabel
classifier for practical reasons such as allowing parallel development
on different verticals by different engineers. For each template
cluster, we use the binary classifiers to obtain the classification
probability (scores) for sampled emails from the template. We then
aggregate the email-level scores to obtain a template level vertical
classification. Once a template is labeled as belonging to a certain
vertical, all emails associated with it are also considered to belong
to the same vertical (regardless of their individual classification
scores). This two-level classifier allows us to build a template-level
classifier using both email-level as well as template-level features,
without simultaneously using features from all the emails in the
template cluster.

Each binary vertical classifier is implemented in TensorFlow
[1] as a feed-forward deep neural network using a standard cross-
entropy loss function and up to three hidden layers of at most a few
hundred units. The exact network architecture and hyperparameter
configuration is optimized separately for each vertical using Vizier
[14].

2.2.3 Classifier Features. The text content of each email is con-
verted into a number of features before being fed into the neural
network classifier. We briefly mention a few of these features here.
Most features take the form of bags of words, where each word is
hashed to obtain an integer value fed to the network along with
a weight corresponding to its frequency. We remove stop words
and normalize case to reduce feature sparsity. All word features
are translated using embeddings, which can be initialized using
standard techniques, such as word2vec [24]. We use multiple bag
of words features: for words occurring anywhere in the email body
text; for words occurring in the subject; for words occurring in a
bold or large font; for words occurring in a footer; and for words
occurring near a date or time in the email. In addition, we also
use the counts of various HTML tags (including images, links and
scripts) as features. Note that we avoid overfitting to the ground
truth labels (which are generally available only for high-volume
senders) by excluding features directly related to the sender.

We have also found it helpful to incorporate some template-level
features in the classifier. For instance, we add an open-ratio feature
corresponding to the fraction of all emails clustered to form this
template that were opened by users.

2.2.4 Evaluation. During model training and hyperparameter
tuning, we use the Area under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) as our evaluation metric. However,
since our objective is to generalize beyond the ground truth labels,
we manually assess the accuracy of each trained classifier to obtain
its true precision and coverage.

3 IMAGE DATA PIPELINE
The pipeline described in Section 2 is primarily designed to work
with text documents. But we have found that a significant fraction
of emails, particularly those that contain offers, are image-heavy.
Such emails often have all of their useful content in images, making
the fields we would like to extract invisible to the existing pipeline.
In this section, we describe how we modified our system to add the
capability to categorize image-rich emails.

3.1 Design Considerations
We begin by laying out a number of desiderata that constrained the
system design. We also briefly describe here how we address those
considerations, but defer details to the remainder of this section.
(1) Respect user privacy.We extend the k-anonymity approach to

image extraction. An image is considered a “fixed” feature of a
template, if and only if its URL is observed by k unique users
within the template cluster, where k is the anonymity threshold
previously discussed. This ensures that we filter out private or
user-identifiable images, such as photos.

(2) Minimize network load. Most images in promotional emails are
included in the form of URLs that are fetched during HTML
rendering. Fetching these images for ahead-of-time analysis as
part of the email categorization pipeline can introduce a large
network load since images are bandwidth-heavy. Not only does
this bandwidth cost add to our expenses as an email service
provider, but it also increases the load (and bandwidth cost)
experienced by the senders’ servers. However, since constraint
(1) restricts our attention to images (identified by URLs) that
are sent to a large number of users, we designed our system to
only fetch those images just once.

(3) Minimize training cost. Introducing multimedia objects into
the email categorization pipeline has the potential to greatly
increase the cost of training the machine learning model. For
instance, consider the prohibitively expensive (but technically,
quite interesting) approach of rendering each email (including
images and text, capturing it as a new image and feeding the
latter into a convolutional neural network. Instead, we chose
to separately convert each image into a set of training features
that are then aggregated into email-level features used in the
existing pipeline.

(4) Minimize cost and latency of serving emails. Given the enormous
volume of emails processed by our system, it is imperative
that we set the objective of minimizing per-email serving cost.
This goal is complementary to our users’ expectation of real-
time access to their emails. In keeping with the scalable design
of the existing pipeline, we ensure that there is no machine
learning model applied directly per-email. Instead, we match
each email with the template to which it belongs and use its
cached template-level categorization. This objective also rules
out the option of fetching and processing images on a per-
email basis, in favor of the template-based offline approach we
propose here.

(5) Minimize changes to the existing pipeline. Since our existing
pipeline has been in production for years and has been shown
to be both robust and scalable, we would like to minimize
changes to it. In particular, this meant that we should learn

OCR Images

http://domain.com/offer.png

http://server.com/bill.png

http://domain.com/offer.png
in-store savings coupon now
thru thursday, January 31st
take an extra ...

…
http://server.com/bill.png
Invoice bill to ...

ImagesExtracted Text

Emails

Template
Induction

Templates

http://domain.com/offer.png

…
http://server.com/bill.png

Distinct Image URLs

Extract Distinct
Image URLS

Fetch
Images

Extract Fixed
Image URLs

Template 1 Template 2

http://domain.com/offer.png
...

http://server.com/bill.png
...

Fixed Image URLs

in-store savings

coupon now

thru thursday

...

coupon
now

thru take
extra

OCR Text Features

Extract
Features

Bag of all words
in OCR text

Bag of words
near date/time

in OCR text

Template 1 Template 2

Figure 4: Image pipeline for extracting image OCR features
from emails.

from the existing training data sources (which are based on
hand-written parsers), rather than building and maintaining a
new source such as a manually labeled corpus of image-heavy
emails (which would require expensive periodic refreshes to
capture new trends). In Section 3.4, we describe how we used an
optical character recognition (OCR) engine to convert images
into text features that could be incorporated into our text-based
email categorization pipeline, and how we used the existing
training corpus of text-based hand-written parsers to learn a
model containing OCR text features.

3.2 Overview
Figure 4 summarizes our image data pipeline. We first leverage our
template induction to cluster structurally similar emails together.
During this clustering process, we also extract URLs of images that
are fixed, i.e., common across all unique recipients of the template.
Next, we aggregate the distinct image URLs seen across all templates
and fetch these images. Finally, we use an OCR engine to extract
the text in these images and create features that can be inserted
into the classification pipeline of Section 2.

3.3 Image URL Extraction and Fetch
After clustering emails into templates, as described in Section 2, we
extract the set of unique fixed image URLs that are shared across
all emails in the cluster. This is done by building and traversing
the document object model (DOM) tree [22] of each email body,
and storing the image URL of each tag observed, along with
fingerprint of the recipient’s ID. After traversing all emails in the
cluster, we use the fingerprinted IDs to filter out all image URLs
that do not pass the k-anonymity thresholds.

In addition to preserving privacy, extracting these fixed im-
age URLs also has the advantage of reducing the processing load
downstream in the pipeline. Since many templates reuse the same
images—a common feature among templates from the same domain—
we aggregate over all extracted image URLs to construct a list of
distinct image URLs in order to process each only once.

Next, we download all the images using Google’s internal web
crawling infrastructure. This framework maximally parallelizes
fetches from multiple servers, while adaptively rate-limiting re-
quests to servers that are overloaded. It also handles various fail-
ure/error scenarios and automatically retries fetches over a window
of several hours. Crucially, it also respects the robots exclusion
protocol [26] ensuring that we only download images from servers
that permit us to do so. In fact, we find that we consistently discard
about a third of the image URLs due to robots exclusion.

We note here that it is possible to be more selective in the deci-
sion of which images to fetch. A large fraction of these fixed images
are icons (particularly social media icons), buttons (including nav-
igation menus) and unpersonalized tracking pixels. Since these
images are typically small in size (both bytes and dimensions) and
rarely contain information relevant to our information extraction
task, we exclude these images based on their size, either as specified
in the HTML markup or in the response to an HTTP HEAD request.

3.4 Feature Extraction from Images
3.4.1 OCR Engine. We use an optical character recognition

(OCR) engine to extract text from the downloaded images. The
choice of OCR engine required a careful evaluation of many options
considering many different factors, including accuracy, computa-
tional expense and language support. While a detailed discussion of
this evaluation is beyond the scope of the current work, we briefly
remark upon it here.

It is important to note that most images in B2C email campaigns
are born-digital, i.e., they are composed of text digitally overlaid
on photographs or backgrounds. Consequently, the text detection
task here is considerably different from extraction from scanned
images of books or Street View images [33]. In fact, an engine
that produces high-accuracy results for the latter, “natural” image
corpora may not necessarily perform well on our more “synthetic”
image corpus. As a further consideration, given the large volume
of images on which we want to perform OCR, it is important that
the engine makes efficient use of computational resources for each
image. Finally, we also wanted to support classification of emails

in multiple languages, including some with non-Latin scripts (such
as Japanese, Arabic, or Cyrillic).

We evaluated many OCR engines underlying the Google Cloud
Vision [15] service offering, including Tesseract [29], PhotoOCR
[6] and Aksara [12]. Based on a small-scale manual evaluation,
we found that both Aksara and PhotoOCR had comparable and
acceptably low error-rates compared to Tesseract. We ultimately
chose to use Aksara based on its broader language support.

An avenue that we have identified for future exploration is train-
ing a custom OCR model for our image corpus, using transfer
learning from an existing one. This latter option may allow us to
explicitly choose a point in the tradeoff space most suited to our
needs.

3.4.2 OCR Text Features. We convert the OCR text into features
inmuch the sameway as the email body text. In particular, we create
two bags of words, one containing all the words in the OCR text
(across all images in an email) and another containing those words
that occur near a date. (The latter feature is based on the intuition
that the occurrence of certain phrases, such as “valid through” or
“expires on”, directly preceding a date is a strong indicator that
the email contains an offer, and that the date in question is the
expiration date.) These bags of words are converted to features
using the same feature hashing as the email text features.

3.4.3 Classifier Training. The OCR text features finally give
our classifiers the desired visibility into the content of the images.
However, we are now faced with a subtle issue for classifier training:
since our ground truth labels originally come from extraction rules
that are text-based, they are systematically biased against the image-
heavy emails that the new features are designed for. In other words,
the training instances where the OCR text features are most helpful
in classification and extraction are rarely ever labeled at all in our
ground truth labels. This issue manifests itself in smaller effective
weights assigned to the OCR text features, since the gradient signal
used to update these weights, if present at all, is correlated with
the email text features.

We rectify this shortcoming by merging the OCR text features
into the corresponding features coming from the email body text
(bag of all words in the email body and bag of words near dates, re-
spectively). This technique is predicated on the implicit assumption
that the occurrence of a certain word is an equally useful indicator
of the class label (both vertical or field), whether that occurrence
be in the email body or in an image. For instance, the occurrence of
“valid through” followed by a date is an equally strong indicator of
an email being an offer, whether that phrase occurred in the email
body or in an image.

4 EVALUATION
The experiments in this section are designed to support the principal
claim that leveraging image content of emails using an off-the-
shelf OCR engine and augmenting existing bag-of-words features
with the extracted text is an effective way to improve the offer
classifier. We show that this approach helps us discover 9.12% more
templates than a text-only approach at 90% precision (a threshold
required by many applications that consume the predictions of
the classifier). We also present somewhat surprising results that

0 50000 100000 150000 200000 250000 300000 350000
0

10

20

30

40

50

60

70

80

90

100

Number of Pixels

P
er

ce
nt

 o
f I

m
ag

es

Figure 5: Cumulative distribution of image sizes in email.

66.20%

33.20%

0.50%

Successful

Error during fetch

Error during OCR

Figure 6: Fraction of images successfully OCRed.

the model trained with OCR features performs slightly better even
on templates that are not image-rich. Finally we show that the
additional offer templates that we discover cover the full range of
templates from small senders to very large senders.

The section is organized as follows: Section 4.1 and 4.2 describe
the image feature statistics and experimental setup. Section 4.3 and
4.4 describe how the models are trained and evaluated including the
setup of training, validation, and test sets as well as themethodology
for human evaluation. Finally, the experimental results are reported
and discussed in Section 4.5.

4.1 Statistics About Images
Before presenting an evaluation of our system, we discuss some of
the statistics we observed about email image data that informed
our design choices.

Figure 5 shows the cumulative distribution of the images in a
sample of emails by pixel count. Unsurprisingly, a large fraction of
the images are small visual elements used to organize the content
in the email. Less than 25% of the images are larger than 10K pixels.
We avoid crawling and performing OCR on images that are too
small to contain recognizable text, thereby saving network and
computational resources.

The “alt-text” attribute [31] is empty for 47% of images and
contains just a single word for 40%. This indicates that, at least
in HTML email, alt-text is often an inadequate description of the
image content.

Figure 6 shows the fraction of image URLs (above a minimum
size) from which we are able to extract non-empty OCR text. A
non-trivial portion is lost to crawling errors, predominantly due to
robots exclusions. The experimental results that follow represent a

FooterText
Y N

OCR
Text

Y 5.17% NA
N 94.83% 0.00%

TextAroundDateTime
Y N

Y 0.11% 0.02%
N 72.13% 27.74%

Table 1: Co-occurrence of OCR text features and the corre-
sponding email text features. Columns are features from
email text and rows are the corresponding features from
OCR text. Refer to text for description.

Training and Validation Testing
Templates Positives Negatives Ratio Templates
1.8M 1.4M 14M 90%/10% 950K

Table 2: Statistics of training, validation and testing dataset.
The ratio refers to the ratio between training data size and
validation data size.

lower bound on the amount of signal we are able to extract from
image content. As we tackle the error rates in the image acquisition
pipeline, we expect the results to improve.

As mentioned in Section 3.4, we merge the OCR text into the
existing text features extracted from the email body. The merging
can potentially reinforce or enrich the existing features. The co-
occurrence between OCR text features and existing text features is
captured by the matrix shown in Table 1. Two OCR text features are
generated in correspondence to the existing text features, FooterText
and TextAroundDateTime. The first OCR-derived feature is a bag
of words of all text extracted from email images. The second OCR-
derived feature is a bag of words of OCR text surrounding datetime
annotations detected in the images. ‘Y’ and ‘N’ represent whether
the feature is present in the training example. It can be seen that
for the FooterText feature, the corresponding OCR text feature is
missing the majority of the time; while for TextAroundDateTime
feature, the corresponding OCR feature is rarely present. Even still,
as we shall see later, the limited extra OCR information boosts the
model performance significantly.

4.2 Experimental Setup
We split the corpus of templates into 70% training templates and
30% testing templates. Since the offer classifier is trained at email
level, we obtain the emails from the training templates and divide
them into training and validation subsets with the ratio of 90%/10%.
The statistics of the resulting datasets are reported in Table 2. The
values for positives and negatives refer to number of emails—note
that in order to reduce the impact of class imbalance, we downsam-
pled the negatives significantly. Training and validation subsets
are used for hyperparameter tuning and final model training after
hyperparameters are selected. We use the testing templates to es-
timate the performance of the model in a real world application
scenario.

4.3 Model Training
Two models are trained: a control model and a treatment model.
The control model serves as a baseline which does not utilize OCR
information, while the treatmentmodel integrates OCR information.

Parameter Value
Batch Size 50
Embedding Dimension 50
Layers 2

Parameter Value
Dropout 0.14
Learning Rate 0.043
Layer Size 20

Table 3: Hyperparameters used for training control and
treatment models in the experiment.

AUC 1 −AUC

Control 0.9994 0.0006
Treatment 0.9995 0.0005

Table 4: Model performance on validation dataset. Both
models have comparable AUC values, but their differences
on 1 −AUC values are more evident.

Both models use the same features, however, the treatment model
merges the OCR text features into existing text features.We adopted
a Deep Neural Network (DNN) architecture for both models. The
optimal hyperparameters for the control model are determined
using Vizier [14], and the same hyperparameters are used for the
treatment model. The optimal hyperparameters are shown in Table
3. It is worth mentioning that embeddings are shared across all text
features in order to reduce model complexity.

4.4 Evaluation Methodology
We first measure the performance of the control and treatment
models using the AUC of ROC metric. Results in Table 4 show
that the treatment model is superior to the control model. To make
the contrast more evident, examine the 1 − AUC values, which
represents the the probability for the model to rank a negative
example above a positive example. The 1−AUC of treatment model
is roughly 0.0006−0.0005

0.0006 ≈ 17% smaller than control model.
Since the labels of our training data are derived from manual

parsers, it is likely that they contain certain biases, for example,
bias towards high-volume senders and image-poor emails. Thus,
performance measured on the validation set might not be represen-
tative of how the models perform in the real world where vertical
labels are missing for a lot of templates. In order to better measure
the performance of these models beyond the limited scope of the
manual parsers, we evaluate each model (control and treatment)
over a sample of the templates in the testing set and compute the
precision and coverage.

As described in Section 2.2.2, we score each template by the
average of the binary classification scores of all emails within the
template. Thus, the template-level score ranges between 0 and 1.
Since our application requires high precision, we set the template-
level score threshold to 0.9.1 We call these candidate templates
score-0.9 templates. For each experimental model we gather their
respective set of score-0.9 templates and compare the number of
templates (coverage) and the average precision.

We estimate the precision through human assessment on sam-
ples drawn from each score-0.9 template set. A score-0.9 template
1Ideally, in order to get the maximum recall, we should find the lowest template-level
threshold that meets the precision requirement, but this requires significant amount
of human assessment effort. In this paper, we set the threshold to 0.9, which in our
dataset is a reasonable starting point to obtain the desired precision.

Templates Precision 95% CI
Control 67,609 89.24% [82.37, 96.11]
Treatment 73,772 90.00% [83.39, 96.61]

Table 5: Number of score-0.9 templates discovered by control
and treatment models and the respective template-level pre-
cision. Precision of both models is statistically equivalent,
while the treatment model increases template coverage by
9.12%. Note that OCR features are excluded from the dataset
for control, and included for treatment.

is labeled as an offer if from manual inspection, one is able to deter-
mine that there’s some promotional offer that might deliver savings
for the user. For example, the following patterns are commonly
indicative of an offer template:

• Explicit discount rate, e.g. “xx% off”
• Offer expiration date, e.g. “valid through date”
• Eligible for free shipping, e.g. “Free shipping for orders over
$x”

• Buy X get Y free
An assessor responds with ‘Yes’ or ‘No’ if there is no ambiguity

when judging the template, otherwise ‘NA’, and the responses are
excluded from the precision computation.

4.5 Experimental Results
The number of score-0.9 templates and the respective template
precision for both models are reported in Table 5. A two-tailed
z-test shows that the two models have equal precision, while the
treatment model discovers 9.12% more score-0.9 offer templates,
which translates to about 5% additional email coverage. Note that
control and treatment models are tested on the same set of tem-
plates, and the only difference is whether OCR text features are
used in email-level model inference.

The immense number of emails and their associated privacy
constraints make it extremely difficult to accurately measure the
recall of the treatment and control models. However, we can ob-
tain a biased proxy: the recall of our models on the high-volume
sender domains covered by the hand-crafted parsers described in
Section 2.2.1. A subset of our testing templates is covered by such
parsers; we call these templates Manual Parser Templates (MPTs).
AnMPT is treated as an offer template if at least 90% of its emails are
labeled as offers by a hand-crafted parser, and are herein referred
to as score-0.9 MPTs.2

Figure 7 depicts the overlapping and non-overlapping templates
classified as offers by the manual parsers, control model, and treat-
ment model. Our first observation is that the use of machine learn-
ing greatly complements the manual parser based approach by
extending coverage well beyond the capabilities of hand-crafted
rules. Furthermore, template generation and classification is an
automatic process, which can be executed periodically to capture
changes in templates over time, while hand-crafted parsers are
brittle to these changes and must be manually updated. This is

2While hand-crafted parsers are precise, they often have low recall. Thus, a template
that corresponds to one of these hand-crafted parsers, but still has a low score from
the offer classifier is usually a sign of a false negative from the classifier.

212
(3%)

60,598
(839%)

7,011
(97%)

252
(3.5%)

66,801
(925%)

6,971
(96.5%)

Figure 7: Number of templates classified by the control and
treatment models compared to the manual parsers. The
manual parsers cover 7,223 offer templates. The control
model labeled 67,609 templates as offers. The treatment
model labeled 73,772 templates as offers.

OCR Feature
Present Not Present

Control 18,424 49,185
Treatment 20,515 53,257
Increment 11.35% 8.25%

Table 6: Number of score-0.9 templates discovered by each
model split by whether they contain OCR text features.

particularly important for the offer vertical, since sales and deals
are often temporal in nature (e.g. holiday sales, flash sales, etc.).

Our second observation is that the inclusion of OCR text features
in the treatment model further extends the coverage of the control
model by 9% in terms of the number of templates. Note that this
translates to a 5% increase in email coverage.

In Table 6 we explore how coverage is affected by the presence
of the OCR feature in the template at inference time. As expected,
templates that contain the OCR feature benefit the most. Templates
that do not contain OCR features also benefit from the OCR fea-
ture, despite its absence. This improvement can be attributed to
the merging of the OCR features with the existing text features,
which strengthens the model at training time. At inference time,
templates with only textual features are able to take advantage of
the additional knowledge the treatment model has learned from
the OCR text. Hence, the use of OCR features is beneficial for both
merchants that present offer information in images as well as those
that do not.

We further break down the discovered offer templates into quar-
tiles by email count to investigate whether the newly introduced
OCR features benefit larger or smaller merchants. Row 1 in Table
7 depicts the lower bound (in terms of number of emails) of each
quartile.

The increase in coverage made by the control model over MPTs
skews more towards smaller templates. This makes sense since

Q1 Q2 Q3 Q4
Treatment quartile
boundary (emails) k 4.8k 15k 65k

MPTs 1,123 1,656 1,822 2,622
Control 14,889 17,336 17,136 18,248
Treatment 16,350 19,170 18,787 19,465
Control/MPTs 13.26× 10.47× 9.41× 6.96×
Treatment/MPTs 14.56× 11.58× 10.31× 7.42×
Treatment/Control 1.10× 1.11× 1.10× 1.07×

Table 7: The score-0.9 templates discovered by the treat-
ment model broken into quartiles according to the num-
ber of emails per template, represented by multiples of k ,
the anonymity threshold. Row 1 shows the lower bound of
each quartile. We use these boundaries in subsequent rows
for comparison. Rows 2-4 depict the per-quartile number of
score-0.9 templates discovered by each model type with the
corresponding number of sample emails within the interval
defined by row 1. Rows 5-7 depict the template coverage in-
crease factor between the various models.

manual parsers are generally written for larger senders, so the
distribution will skew towards larger templates, while templates
induced through automatic clustering will discover templates of all
sizes, provided they pass the k-anonymity thresholds.

Recall that the total increase in coverage of the treatment model
over the control model was 9.12%. In Table 7 we observe that this
improvement holds across the board, irrespective of whether the
templates are small or large. Hence, the use of OCR information in
offer classification is beneficial for both small and large merchants.

5 RELATEDWORK
The ongoing explosive growth in email volumes is largely domi-
nated by machine-generated emails such as confirmations, newslet-
ters, notifications, and promotions. Such a dramatic shift in the
character of their inbox contents is clearly a challenge for the
typical recipient—one that our research community has sought
to address in a number of innovative ways [23, 25]. For instance,
the traditional problem of spam classification [7] has now been
broadened to that of identifying important emails [2] and semanti-
cally categorizing emails [16]. Similarly, webmail providers have
broadened email threading from a syntactic approach (based on
subject and RFC headers) appropriate for personal conversations,
to a semantic approach (based on identification of sequences of
causally-related emails) suited to machine-generated emails [3].
This idea of “causal threading” has even been extended to predict
future emails in a thread [13, 35].

Machine-generated emails are usually generated by filling out
generic templates (describing the layout and boiler-plate) with
variable details specific to the context of the email. Reversing this
process, i.e., decomposing an email into its constituent template
and specific details, opens a plethora of avenues towards better
managing such emails. Emails instantiated from the same template
are highly likely to be semantically similar, and can therefore be
treated similarly for the purpose of various different tasks. Indeed,
the recognition of this fact can improve both the scalability and

accuracy of machine learning techniques for tasks such as spam
classification, email categorization and causal threading mentioned
above. A lot of recent work has therefore been aimed at addressing
this template induction problem [4, 27, 34]. Section 2.1 describes
how we use some of these techniques in our pipeline.

Related to the problem of generalizing the common template
from a set of emails is the dual problem of extracting the specific
details used to instantiate variable fields in the template. These
details include, for instance, the product name, delivery date and
tracking ID for a shipping confirmation, as well as the coupon code
and offer expiration date from a promotional email. Fields extracted
from emails in this way can be used for targeted advertising [17],
or to create reminders, calendar events or notifications for the user.
While this problem has been well-studied under the moniker of
wrapper induction [20] in information extraction literature (partic-
ularly for HTML documents on the web), there is relatively little
published work on the subject in the context of emails. Zhang et al.
[36] studied the problem of extracting product information from
machine-generated B2C emails.

The research problems highlighted here are often rendered much
more challenging by virtue of the fact that emails are private doc-
uments and users accordingly have stringent expectations of pri-
vacy. In this work, we used a k-anonymity approach similar to
that described in [11] to meet these privacy expectations. However,
a number of practical challenges remain unsolved in developing
industrial-scale machine learning models over private data (see [30]
for some examples in the context of non-email, private documents).

What we have highlighted above is only a sample of the rich body
of research literature on various aspects of email management at
web-scale as well as information extraction from web documents.

6 CONCLUSION
This paper tackles the problem of detecting commercial offers in
emails (promoting discounts, free shipping, special sales, etc.) so
we can enable new experiences such as alerting a user to a discount
in her email when she visits a relevant store. We argue that image
content is key to understanding such emails. We described a tech-
nique for accomplishing thiswithout having to run an expensive ML
model over rendered emails online. The key insight in this paper
is to leverage the template structure of emails, and use the OCRed
text of images to augment the existing text features offline. The
resulting model associates templates with offer emails, and can be
used inexpensively online to label incoming emails. Experimental
results show that we are able to discover 9.12% more templates than
the text-only model at the same precision level (~90%).

To the best of our knowledge, ours is the first study of email
classification for image-rich emails. In this work, we went beyond
simply using the location or count of images in document structure
to analyzing the textual content of the images and incorporating it
into the classification pipeline. We plan to extend this work beyond
classification to extraction of key fields like expiration dates, coupon
codes, and offer text (e.g. “Free Shipping”) from the image content
in the email when we are unable to obtain them from the text in
the email.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine
Learning. In Proc. of the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI). 265–283.

[2] Douglas Aberdeen, Ondrej Pacovsky, and Andrew Slater. 2010. The Learning
Behind Gmail Priority Inbox. In LCCC: NIPS 2010 Workshop on Learning on Cores,
Clusters and Clouds.

[3] Nir Ailon, Zohar S Karnin, Edo Liberty, and Yoelle Maarek. 2013. Threading
Machine Generated Email. In Proc. of the 6th ACM International Conference on
Web Search and Data Mining (WSDM). 405–414.

[4] Noa Avigdor-Elgrabli, Mark Cwalinski, Dotan Di Castro, Iftah Gamzu, Irena
Grabovitch-Zuyev, Liane Lewin-Eytan, and Yoelle Maarek. 2016. Structural
Clustering of Machine-Generated Mail. In Proc. of the 25th ACM International on
Conference on Information and Knowledge Management (CIKM). 217–226.

[5] Michael Bendersky, Xuanhui Wang, Donald Metzler, and Marc Najork. 2017.
Learning from User Interactions in Personal Search via Attribute Parameteriza-
tion. In Proc. of the 10th ACM International Conference on Web Search and Data
Mining (WSDM). 791–799.

[6] Alessandro Bissacco, Mark Cummins, Yuval Netzer, and Hartmut Neven. 2013.
PhotoOCR: Reading Text in Uncontrolled Conditions. In Proc. of the 2013 IEEE
International Conference on Computer Vision (ICCV). 785–792.

[7] Enrico Blanzieri and Anton Bryl. 2008. A Survey of Learning-based Techniques
of Email Spam Filtering. Artificial Intelligence Review 29, 1 (2008), 63–92.

[8] Chia-Hui Chang, Mohammed Kayed, Moheb R Girgis, and Khaled F Shaalan.
2006. A Survey of Web Information Extraction Systems. IEEE Transactions on
Knowledge and Data Engineering 18, 10 (2006), 1411–1428.

[9] Michael Chui, James Manyika, Jacques Bughin, Richard Dobbs, Charles Roxburgh,
Hugo Sarrazin, Geoffrey Sands, and Magdalena Westergren. 2012. The Social
Economy: Unlocking Value and Productivity through Social Technologies. McKinsey
Global Institute.

[10] Dotan Di Castro, Zohar Karnin, Liane Lewin-Eytan, and Yoelle Maarek. 2016.
You’ve Got Mail, and Here is What You Could DoWith It!: Analyzing and Predict-
ing Actions on Email Messages. In Proc. of the 9th ACM International Conference
on Web Search and Data Mining (WSDM). 307–316.

[11] Dotan Di Castro, Liane Lewin-Eytan, Yoelle Maarek, Ran Wolff, and Eyal Zohar.
2016. Enforcing K-anonymity in Web Mail Auditing. In Proc. of the 9th ACM
International Conference on Web Search and Data Mining (WSDM). 327–336.

[12] Y. Fujii, D. Genzel, A. C. Popat, and R. Teunen. 2015. Label Transition and
Selection Pruning and Automatic Decoding Parameter Optimization for Time-
synchronous Viterbi Decoding. In Proc. of the 13th International Conference on
Document Analysis and Recognition (ICDAR). 756–760.

[13] Iftah Gamzu, Zohar Karnin, Yoelle Maarek, and David Wajc. 2015. You Will Get
Mail! Predicting the Arrival of Future Email. In Proc. of the 24th International
Conference on World Wide Web (WWW). 1327–1332.

[14] Daniel Golovin, Benjamin Solnik, SubhodeepMoitra, Greg Kochanski, John Karro,
and D. Sculley. 2017. Google Vizier: A Service for Black-Box Optimization. In
Proc. of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD). 1487–1495.

[15] Google. 2015. Cloud Vision API. https://cloud.google.com/vision/. (2015).
[16] Mihajlo Grbovic, Guy Halawi, Zohar Karnin, and Yoelle Maarek. 2014. HowMany

Folders Do You Really Need?: Classifying Email nto a Handful of Categories. In
Proc. of the 23rd ACM International Conference on Conference on Information and
Knowledge Management (KDD). 869–878.

[17] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-commerce in Your Inbox:

Product Recommendations at Scale. In Proc. of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 1809–1818.

[18] The Radicati Group. 2017. Email Statistics Report, 2017-2021. http://www.radicati.
com/?p=8801. (2017).

[19] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew Tomkins,
Balint Miklos, Greg Corrado, Laszlo Lukacs, Marina Ganea, Peter Young, and
Vivek Ramavajjala. 2016. Smart Reply: Automated Response Suggestion for
Email. In Proc. of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). 955–964.

[20] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. 1997. Wrapper
Induction for Information Extraction. In Proc. of the 15th International Joint
Conference on Artificial Intelligence (IJCAI). 729–737.

[21] Himabindu Lakkaraju, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil
Mullainathan. 2017. The Selective Labels Problem: Evaluating Algorithmic Pre-
dictions in the Presence of Unobservables. In Proc. of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD). 275–
284.

[22] Philippe Le Hégaret, Ray Whitmer, and Lauren Wood. 2005. Document Object
Model (DOM). http://www.w3.org/DOM. (2005).

[23] Yoelle Maarek. 2017. Web Mail is not Dead!: It’s Just Not Human Anymore. In
Proc. of the 26th International Conference on World Wide Web (WWW). 5–5.

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-
mation of Word Representations in Vector Space. In Proc. of the 1st International
Conference on Learning Representations: Workshop Track (ICLR). arXiv:1301.3781

[25] Marc Najork. 2016. Using Machine Learning to Improve the Email Experience. In
Proc. of the 25th ACM International on Conference on Information and Knowledge
Management (CIKM). 891–891.

[26] Christopher Olston and Marc Najork. 2010. Web Crawling. Foundations and
Trends in Information Retrieval 4, 3 (2010), 175–246.

[27] Julia Proskurnia, Marc-Allen Cartright, Lluís Garcia-Pueyo, Ivo Krka, James B
Wendt, Tobias Kaufmann, and Balint Miklos. 2017. Template Induction over
Unstructured Email Corpora. In Proc. of the 26th International Conference on
World Wide Web (WWW). 1521–1530.

[28] Sunita Sarawagi. 2008. Information Extraction. Foundations and Trends in
Databases 1, 3 (2008), 261–377.

[29] Ray Smith. 2007. An Overview of the Tesseract OCR Engine. In Proc. of the 9th
International Conference on Document Analysis and Recognition (ICDAR). 629–633.

[30] Sandeep Tata, Alexandrin Popescul, Marc Najork, Mike Colagrosso, Julian Gib-
bons, Alan Green, Alexandre Mah, Michael Smith, Divanshu Garg, CaydenMeyer,
et al. 2017. Quick Access: Building a Smart Experience for Google Drive. In Proc.
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD). 1643–1651.

[31] W3C. 1999. Objects, Images, and Applets. https://www.w3.org/TR/html4/struct/
objects.html. (1999).

[32] W3C. 2009. HTML Microdata. https://dev.w3.org/html5/md-LC/. (2009).
[33] Kai Wang, Boris Babenko, and Serge Belongie. 2011. End-to-End Scene Text

Recognition. In Proc. of the 2011 International Conference on Computer Vision
(ICCV). 1457–1464.

[34] James B. Wendt, Michael Bendersky, Lluis Garcia-Pueyo, Vanja Josifovski, Balint
Miklos, Ivo Krka, Amitabh Saikia, Jie Yang, Marc-Allen Cartright, and Sujith Ravi.
2016. Hierarchical Label Propagation and Discovery for Machine Generated
Email. In Proc. of the 9th ACM International Conference on Web Search and Data
Mining (WSDM). 317–326.

[35] Aston Zhang, Lluis Garcia-Pueyo, James B Wendt, Marc Najork, and Andrei
Broder. 2017. Email Category Prediction. In Proc. of the 26th International Confer-
ence on World Wide Web Companion (WWW). 495–503.

[36] Weinan Zhang, Amr Ahmed, Jie Yang, Vanja Josifovski, and Alex J. Smola. 2015.
Annotating Needles in the Haystack Without Looking: Product Information
Extraction from Emails. In Proc. of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD). 2257–2266.

https://cloud.google.com/vision/
http://www.radicati.com/?p=8801
http://www.radicati.com/?p=8801
http://www.w3.org/DOM
http://arxiv.org/abs/1301.3781
https://www.w3.org/TR/html4/struct/objects.html
https://www.w3.org/TR/html4/struct/objects.html
https://dev.w3.org/html5/md-LC/

	Abstract
	1 Introduction
	2 Email Clustering and Classification
	2.1 Template Induction
	2.2 Vertical Classification

	3 Image Data Pipeline
	3.1 Design Considerations
	3.2 Overview
	3.3 Image URL Extraction and Fetch
	3.4 Feature Extraction from Images

	4 Evaluation
	4.1 Statistics About Images
	4.2 Experimental Setup
	4.3 Model Training
	4.4 Evaluation Methodology
	4.5 Experimental Results

	5 Related Work
	6 Conclusion
	References

