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Abstract—Extracting structured data from visually rich docu-
ments like invoices, receipts, financial statements, and tax forms
is key to automating many business workflows. However, building
extraction models in this domain often demands a large collection
of high-quality training examples. To address this challenge,
we introduce FieldSwap, a novel data augmentation technique
specifically designed for such extraction problems. FieldSwap
generates synthetic training examples by replacing key phrases
indicative of one field with those corresponding to another. Our
experiments on five diverse datasets demonstrate that incorpo-
rating FieldSwap-augmented data into the training process can
enhance model performance by 1–11 F1 points, particularly
when dealing with limited training data (10–100 documents).
Additionally, we propose algorithms for automatically inferring
key phrases from the training data. Our findings indicate that
FieldSwap is effective regardless of whether key phrases are
manually provided by human experts or inferred automatically.

Index Terms—Date Efficiency, Data Augmentation, Informa-
tion Extraction

I. INTRODUCTION

Visually rich documents like invoices, receipts, paystubs,
insurance statements, and tax forms are pervasive in business
workflows. Processing these documents continues to involve
manually extracting relevant structured information, which is
both tedious and error-prone. Consequently, several recent
papers have tackled the problem of automatically extracting
structured information from such documents [1]–[7]. Given a
target document type with an associated set of fields of interest,
as well as a set of human-annotated training documents, these
systems learn to automatically extract the values for these
fields from unseen documents of the same type.

While recent models have shown impressive perfor-
mance [8]–[11], a major hurdle in the development of high-
quality extraction models is the large cost of acquiring and
annotating training documents. In this paper, we examine
the question of improving the data efficiency for this task
especially when only a small number of labeled training
documents is available. One approach to address this challenge
is data augmentation. Data augmentation techniques can be
used to artificially increase the size of the training dataset,
which can help to improve the generalization performance of
the model.

However, we found that conventional text augmentation
methods such as synonym replacement, random swap, random

deletion [12], [13] are not effective for form extraction tasks.
This is because form extraction relies heavily on anchoring on
specific key phrases within the document that define each form
field. For example, in an invoice, the total due field is typically
indicated by the phrase “Amount Due”. Altering text unrelated
to key phrases does not provide the model with meaningful
variations to learn from. Furthermore, randomly swapping
or deleting words risks breaking the contextual relationship
between the key phrase and the field it defines. This can
confuse the model and hinder its ability to accurately extract
the correct information.

Based on this observation, we focus on key phrases as-
sociated with fields of interest. Inspired by the success of
mixing approaches in the image domain [14], we propose a
novel data augmentation technique called FieldSwap. Given a
labeled example of a source field S in the training dataset,
FieldSwap creates a synthetic example for another target field
T by replacing the key phrase indicative of S in the document
with a key phrase associated with T .

Fig. 1: Example of FieldSwap on a paystub document. The
source field S is current.salary ($3,308.62) and has key
phrase “Base Salary”. FieldSwap generates two synthetic
examples. At bottom left, the phrase is replaced with “Base”,
another key phrase of current.salary, the field label for the
instance ($3,308.62) is retained. At bottom right, the phrase
is replaced with “Overtime”, the key phrase of another field,
current.overtime, and the field label for the instance is changed
to current.overtime.



Fig. 1 illustrates FieldSwap on a snippet of a paystub
document with typical fields like salary and bonus for both
current pay period and year-to-date. Beginning with a training
document containing a labeled example for the current.salary
field and the key phrase indicative “Base Salary”, FieldSwap
generates synthetic examples by substituting key phrases both
within and across fields. This method diversifies training
examples by varying field values, locations, and surrounding
text while maintaining semantic equivalence. This prevents the
model from memorizing specific field locations or coinciden-
tal text cues, enhancing its adaptability to new and unseen
document layouts—an advantage not offered by simpler aug-
mentation methods like synthetic field value generation.

FieldSwap is a simple but effective approach for generating
synthetic examples. We evaluated FieldSwap on a diverse
collection of datasets with real-world documents. Our results
show that FieldSwap can significantly improve the data ef-
ficiency of form extraction models, even when only a small
number of labeled training documents are available. However,
key phrases are not annotated. Form-like documents often
exhibit high diversity in layout and terminology, with key
phrases potentially being away from their corresponding field
instances and obscured by unrelated surrounding text. This
complexity makes the task of identifying key phrases for fields
non-trivial. It is also important to choose the source-target field
pairs carefully. Note that multiple fields may have the same
key phrase. For instance, the key phrase “Overtime” could
be used to identify both the current.overtime field and the
year to date.overtime field. For the example in Fig. 1, replac-
ing the phrase “Base Salary” with “Overtime” while starting
with the labeled example of current.salary in an attempt to
generate a synthetic example for the year to date.overtime
field yields a synthetic example that is not actually an in-
stance of year to date.overtime but rather an instance of
current.overtime, resulting in an incorrectly labeled example
in the augmented dataset.

The key questions are: (a) how do we infer the key phrases
associated with each field, and (b) which field pairs should be
considered for generating these synthetic examples? We show
that having a human expert supply a handful of key phrases
works surprisingly well. The challenge then becomes how to
automatically infer key phrases when only a limited number
of labeled examples are present. Our findings demonstrate that
a small model pre-trained for an extraction task on an out-
of-domain corpus can be effectively used to identify the key
phrases. In terms of selecting appropriate source-target field
pairs, we found that considering the base type of a field is
very useful. Form extraction tasks are invariably guided by a
predefined schema, which serves as a blueprint for identifying
and extracting specific information from a document. This
schema comprises a collection of descriptive labels, termed
fields, that pinpoint the relevant text segments for extraction.
Moreover, the schema often encompasses details regarding the
characteristics of these fields, such as their base types. In
our study, we categorized each field into one of five base
types: date, number, money, address, or string. The string

data type serves as a comprehensive category for any fields
that do not fall into the other four types. For example, a
paystub document might have fields like base salary (type
money), period start date (type date), employee’s address (type
address), employee’s name (type string), etc. We show that
simply considering all pairs of fields of the same base type can
work quite effectively. Experiments on a diverse set of corpora
show that FieldSwap can produce an improvement of 1–11
F1 points (i.e., 1–19% over the baseline). For context, novel
architecture and pre-training objectives in this space typically
resulted in increases of 1–1.5 F1 points [15]. We believe this
is an exciting step towards better data efficiency in extraction
tasks for visually-rich documents that is orthogonal to larger
models and larger pre-training corpora.

We make the following contributions in this paper:

• We introduce a novel data augmentation strategy called
FieldSwap that generates synthetic examples for a field T
using examples from another field S. To our knowledge,
this is the first data augmentation strategy designed
specifically for visually rich documents.

• We present simple algorithms for automatically inferring
key phrases and field pairs for generating synthetic ex-
amples.

• Through experiments on multiple real-world datasets, we
demonstrate the effectiveness of FieldSwap in improving
average F1 scores by 1–11 points completely automati-
cally, even with small training sets (10–100 documents).

• With simple human expert inputs like key phrases, we
observe further improvement up to 14 F1 points.

II. FIELDSWAP

FieldSwap exploits the property that form fields are very
often indicated by key phrases [16]. For example, the total due
field on an invoice document is often designated by phrases
such as “total” or “amount due”. We leverage this observation
to generate synthetic examples by taking an instance of a
source field, S, substituting associated key phrase with a
key phrase of an intended target field, T , and relabeling the
instance as an example of the target field. This augmentation
is governed by two inputs:

1) The set of valid key phrases for each field. For example,
“total” and “amount due” are valid key phrases for a
total due field in invoices.

2) A list of source-to-target field pairs for which key
phrases can be swapped and result in a valid synthetic
example for the target field.

These settings can be specified manually or they can be
inferred automatically. We find that manually specifying these
settings works surprising well (see results in Section IV-C2).
The main challenge is in automatically inferring these settings
using only a few examples from a small dataset. Below, we
present methods for automatically inferring key phrases and
field pair mappings.



Fig. 2: Architecture of the candidate-based extraction model.
Neighboring tokens of a current.salary candidate (e.g.
$3, 308.62) are fed into a Transformer-based encoder and
a max-pooling layer to generate a Neighborhood Encoding,
which is concatenated with a candidate position embedding
to make a binary prediction for the target field. We use the
model’s intermediate output of each individual neighboring
token encoding and the Neighborhood Encoding for neighbor
importance measurement.

A. Automatically Inferring Key Phrases

We observe that only a small number of tokens in a
document are directly relevant to specific fields. We propose a
method for identifying these important tokens. We then derive
important phrases from them and aggregate these important
phrases to infer a set of key phrases for the field.

1) Use of OCR Engine: Our method relies on an OCR
service for two major purposes. Firstly, we use the OCR
service to detect each text element in a document and their
corresponding bounding boxes. A bounding box refers to
a rectangular region that outlines the spatial position of a
text element within a document. It is typically defined by
their coordinates, which specify the top-left, top-right, bottom-
left, and bottom-right corners of the rectangle. By utilizing
bounding boxes, we can locate any text of interest. Secondly,
we use the OCR service to detect lines of text. Lines are
groups of tokens on the same y-axis that are typically separate
from other lines by way of visual features (e.g. vertical bars
in a table) or long horizontal stretches of whitespace. Both
bounding boxes and line detection are essential for our key
phrase inference method. We will explain how we utilize these
signals in more detail later.

It is important to acknowledge that the accuracy of the OCR
engine directly affects the quality of inferred key phrases.
However, modern OCR engines have become remarkably
robust, able to handle challenges like handwritten scribbles,
background noise, or unusual fonts. Additionally, techniques
like utilizing multiple OCR engines or post-processing to re-
move errors can further minimize the impact of potential OCR
mistakes. In this paper, we mainly focus on the augmentation
method. The established accuracy of our chosen OCR engine
allows us to exclude discussions of OCR performance.

2) Identifying Important Tokens: We observe that most
important tokens associated with an instance of a field tend to
be located close to the instance, either positioned horizontally
or vertically aligned with it in the document. We thus define
tokens that are horizontally or vertically close to a text element
as its neighboring tokens. We hypothesize that only a few
tokens among the neighboring tokens of a field instance hold
significant relevance.

To identify neighboring tokens, we first use an OCR service1

to detect the bounding boxes of each text element in a
document. By our definition, an instance’s neighboring tokens
are tokens that are close to either the x-axis or y-axis of
the instance’s bounding box center in the document. We thus
introduce the off-axis distance metric. Assuming two points,
a and b, have x-axis and y-axis coordinates (ax, ay) and
(bx, by), respectively, the off-axis distance is calculated as
|ax − bx| · |ay − by|. Points that are close together in terms
of their x or y axes have a distance of close to 0, while
those that are diagonally positioned have a greater distance. We
use t closest tokens to an instance based on off-axis distance
between the center of their bounding boxes as the instance’s
neighboring tokens, where t is a tunable hyperparameter.

We propose a method for measuring each neighboring
token’s importance score to a field instance and identifying
important tokens. We leverage the binary classifier architec-
ture described in [16]. In this architecture (as illustrated in
Fig. 2), base type candidates are first extracted from an OCR-
processed document using common-off-the-shelf annotators
like date and number annotators. For each candidate, the model
encodes each neighboring token by concatenating its text
embedding and relative position embedding. Then, it employs
self-attention and max-pooling to generate a single represen-
tation of the candidate’s neighborhood (i.e., Neighborhood
Encoding), which is used along with other features to make a
binary prediction for field(s) in question. This representation is
easy to manipulate for identifying important neighbors. Based
on this architecture, we proposed a method to measure the
importance scores of each neighboring token for a candidate.
The importance score of a neighboring token to a candidate
is calculated as the cosine similarity between the model’s
intermediate output on the candidate Neighborhood Encoding
and the encoding of that individual neighboring token.

We train the model on a large out-of-domain dataset and
directly apply it to get candidate Neighborhood Encoding on
the target domain. The intuition is that the relative position of
a neighbor plays a crucial role in identifying important neigh-
bors, and these positional cues are generally shared across
domains. Empirical results show that the model identifies a
reasonable set of important neighbors for each candidate. For
our purpose, we are only interested in finding important neigh-
boring tokens for positive candidates of the target domain, so
we generate candidates from ground truth instances of fields
directly.

1https://cloud.google.com/vision



Fig. 3: Overall processing procedures. In step 1, key phrases
of all fields are inferred from the training dataset. In step 2,
either field-to-field or type-to-type FieldSwap augmentation is
applied to the training dataset. In step 3, a form extraction
model (such as sequence labeling model) is trained on the
union of the original training documents and the synthetic
documents.

After obtaining the importance scores of each neighboring
token for a labled example, we apply Sparsemax [17] across
the importance scores to get a sparse output of the neighboring
tokens with non-zero scores. We consider these neighboring
tokens as the set of important tokens.

3) Inferring Important Phrases: We observe that an impor-
tant phrase typically resides within a single line. We use an
OCR service1 to detect lines in the document. We construct
important phrases by concatenating all tokens residing on the
same OCR line as long as at least one token is identified as
an important token. Leveraging OCR lines to infer important
phrases also makes the process more tolerant to the model’s
recall loss on important tokens. As long as the model finds one
important token, we’ll be able to infer the longer phrase, if it
exists. We perform post-processing of the OCR line inferred
phrases by cleaning up any leading and trailing punctuation.

We define phrase importance score as the average token
importance score within the phrase.

4) Aggregation and Ranking by Field: Once all important
phrases and importance scores have been gathered for all
labeled examples, we aggregate the results by field and phrase.
For any field F , we use Score(F, P,Ci) to denote the phrase
importance score for a F example Ci that has important phrase
P . We calculate

Importance(F, P ) = 1− exp(Σilog(1− Score(F, P,Ci)))
(1)

as the measurement of how P relates to F . This measurement
prefers phrases with higher importance scores and frequency
across all labeled examples for F . Additionally, this aggrega-
tion approach enhances the robustness of our method against
occasional OCR errors (as discussed in Section II-A1) by
minimizing their impact on the aggregated level. For each

field, we rank all phrases by their Importance and select the
top k phrases as the key phrases for the field, where k is a
tunable hyperparameter.

5) Fields without Key Phrases: Not all fields necessarily
have key phrases. Fields such as company name, company
address, and statement date often appear in the top corners of
documents without any specific phrase indicators. When trying
to infer key phrases for such fields, the model may output
wrong phrases (usually with low importance scores). For
example, the model might infer “LLC” as a key phrase for the
company address field since it may often find many company
names with “LLC” directly above the company address field
value. However, the values of other fields cannot be part of the
key phrase of another field because field values are variable
across different documents while key phrases are consistent
across the documents (belonging to the same template). To
avoid such spurious correlations, we explicitly exclude tokens
that are part of the ground truth for any field in the document.
We also set a threshold θ to filter out any inferred key phrases
with importance score below the threshold, where θ is a
tunable hyperparameter.

B. Field Pair Mappings

We explored three options to determine source-target field
mappings.

Field-to-Field swap. The simplest and most straightforward
option is to swap only examples belonging to the same field. In
this case, source field, S, and target field, T , denote the same
field. With this approach, we are less likely to generate out-
of-distribution synthetic examples. The downside is that we
are usually unable to generate a sizeable number of synthetic
examples unless the field has a lot of labeled examples and
key phrase variations. In practice, it is the rare fields that we
are most interested in augmenting, and these are the fields that
benefit the least from this mapping approach.

Type-to-Type swap. As mentioned in Section I, each field
is associated with a general base type such as date, number,
money, address or string. A simple heuristic is to map fields
that are similar, so considering pairs of fields that have the
same base type is a natural idea. We can generate synthetic
examples for a target field (e.g. salary) from other same-type
fields (e.g. bonus, overtime) by swapping the key phrases. Note
that our implementation of type-to-type mappings implies that
a field will also be mapped to itself. This approach allows us
to generate more synthetic examples for rare fields by utilizing
examples from other frequent fields with the same base type.
It also regularizes the model against spurious correlations with
nearby non-related text.

However, we might generate bad synthetic examples if there
exist contradictory fields with the same type. For example, cur-
rent.bonus and year to date.bonus have the same key phrase
“bonus”, and current.vacation and year to date.vacation have
the same key phrase “vacation”. FieldSwap would generate
contradictory synthetic examples when swapping between the



four fields, such as by creating a synthetic current.vacation
example using a year to date.bonus example.

All-to-All swap. We also considered swapping between any
pair of fields, but found that this was nearly always worse than
type-to-type swaps.

C. Generating Synthetic Documents
We generate FieldSwap augmentations at document level, so

that it is agnostic to the architecture of the extraction model.
However, this brings extra complexity to the implementation
of the FieldSwap augmentation since there could be a number
of constraints introduced by different model architectures.

For examples, for approaches like sequence labeling [1],
[3], every token on the document is an input to the model.
When swapping the key phrases for a pair of fields, should
we also swap the values for these fields so that the model is
not confused by the augmented examples having values too
different from the original examples? For instance, the values
of fields such as tax due and total due have different relative
magnitudes, which might need to be preserved. Furthermore,
should we preserve certain document-level semantics? For
example, some fields should occur only once in a document,
shall we ensure FieldSwap does not introduce multiple in-
stances in a document for such fields? Will there be other
instances of fields which do not belong to the source field
but are also affected by phrase change? Accommodating
these kinds of constraints leads to even more questions—
e.g., must augmentations only be made when two fields can
act as both sources and targets for one another? Must both
fields always be present on the same document in order to
perform an augmentation? How might we generate multiple
augmentations on a single document?

In this work, we want to keep the implementation as simple
as possible. We generate one augmentation at a time by
swapping only one pair of fields so that the augmented data has
very slight disturbances. We only change the label for source
fields for simplicity – we leave the values unchanged. We treat
all fields as they could appear multiple times in the document
during training time, and only apply the schema constraints at
inference time. We found this simple implementation works
surprisingly well with the sequence labeling model we eval-
uated on. We leave it to future work to adapt FieldSwap for
more complex situations.

Once we have the key phrases and field pair mappings, we
proceed to generate synthetic documents. For each document
in the training data, we iterate through all source-to-target field
pairs, if the document contains the source field S and any key
phrases for S, we replace all matching source key phrases with
target key phrase, relabel all S instances to T and generate one
synthetic document corresponding to each key phrase of target
field T .

Note that if no phrases in the document match a key
phrase for the source field, then no synthetic documents are
generated. Furthermore, if the synthetic document remains
unchanged after replacing the source key phrase with the
target’s, we discard it. This helps prevent us from creating

semantically incorrect synthetics, such as the case previously
described in Section II-B, when two fields have the same key
phrase but are semantically different (e.g., current.bonus vs.
year to date.bonus).

III. HUMAN EXPERT

Incorporating human knowledge and expertise into the train-
ing and development of NLP models has become increasingly
prevalent [18]–[20]. A human familiar with a given document
type can easily provide additional inputs in lieu of additional
labeled examples. For instance, a human can provide typical
key phrases that indicate a field as well as mark potential pairs
of fields that should be used for FieldSwap. This idea draws
on the literature in rule-based augmentations where rules are
provided in addition to training examples.

We design a human expert approach by devising a
FieldSwap configuration with human inputs. Instead of re-
lying only on automatically detected key phrases and field
pairs, we leverage human expertise to protect FieldSwap from
some error-prone situations. For example, when configuring
key phrases, some fields, such as company name and com-
pany address, do not have clear key phrases, so we exclude
these fields from FieldSwap entirely in the human expert setup.
Other fields, particularly rare ones, might not have enough
labeled examples in the training set. In that case, we rely on
domain knowledge to supply additional key phrases. When
configuring field pairs, we start with type-to-type field pairs,
then prune those that most likely to appear in different tables
or sections of the document.

Using FieldSwap in this setting will generate more useful
synthetic documents compared to the field-to-field setting, and
fewer incorrect synthetic documents compared to the type-to-
type setting. We assume that this human expert configuration
can achieve higher Max F1 scores than the automatically
generated FieldSwap configuration, due to the higher quality
human inputs.

IV. EXPERIMENTS

A. Dataset

We evaluated the performance of FieldSwap on five datasets
of form-like documents, including two public datasets (FCC
Forms [21], FARA [21]) and three proprietary datasets (Earn-
ings, Brokerage Statements, Loan Payments). Table. I and
Table. II provide summaries of the statistical characteristics of
each dataset. Each dataset corresponds to a different document
type. We herein also refer to document types as domains. For
each domain, a predefined schema outlines all the fields to be
extracted, with each field categorized into one of the five base
types: address, money, date, number, or string. To construct
training sets of varying sizes for our experiment, a subset of
documents was randomly selected from the larger corpora for
each dataset. We conducted evaluation on a fixed hold-out test
set for each domain.



TABLE I: Dataset Statistics.

Document Type # Fields Train Docs Pool Size Test Docs
FARA [21] 6 200 300
FCC Forms [21] 13 200 300
Brokerage Statements 18 294 186
Earnings 23 2000 1847
Loan Payments 35 2000 815

TABLE II: Number of fields with different base types for each
document type.

Field Type
Document Type Address Date Money Number String
FARA [21] 0 1 0 1 4
FCC Forms [21] 1 4 2 1 5
Brokerage Statements 2 4 5 0 7
Earnings 2 3 15 0 3
Loan Payments 3 5 20 0 7

B. Experimental Setup

Automatically inferring key phrases. We use the model
architecture described in Section II-A2 for automatically infer-
ring key phrases. The model is trained on an out-of-domain
document type (invoices) with approximately 5000 training
documents. We tune the hyperparameters using grid search
and use the most performant values. In all our experiments,
we restrict number of neighboring tokens to 100. We use top
3 important phrases as the key phrases for each field. We set
the importance score threshold θ at 0.2.

Human expert. One of the authors of this paper examined
approximately 10 training documents in domain of interest
and recorded the key phrases they observed for each field.
For fields that doesn’t exist in the training documents they
inspected, they rely on domain knowledge to come up with a
handful of key phrases. The same person also constructed the
field pair mappings using the method described in Section III,
which avoids contradictory field pairs.

Backbone form extraction model. FieldSwap is designed
to be agnostic to any architecture for form extraction task.
In our experiment, we use the sequence labeling model de-
scribed in [1] and follow the same unsupervised pre-training
procedure. We first pretrain the model on approximately 30k
unlabeled out-of-domain form documents, then fine-tune the
model on the training documents in the target domain. When
training the model on the target domain, we split the dataset
into 90%-10% training-validation sets. We train the models
for approximately 6 hours and pick the checkpoint with the
highest accuracy across all fields in the validation split.

Evaluation. We believe FieldSwap is complementary to other
existing augmentation methods, and can be combined with
them to achieve incremental improvement. Therefore, we
focus our evaluation on comparing its performance against the
baseline setting of no augmentation. We train baseline form
extraction models on the original training set without synthetic
documents. We add the synthetic documents generated with
FieldSwap to the training set and train new form extraction

models following the same procedure. We train both models
for the same amount of time to ensure that any difference in
performance is due to the FieldSwap augmentation technique
itself, rather than the model with augmented data simply
having more exposure to the training data. By comparing the
end-to-end F1 scores of the trained models, we can quantify
the effectiveness of FieldSwap augmentation.

We vary the training set sizes (i.e. 10, 50, 100) to plot
learning curves. In order to capture the inherent variability
that may arise in experiments with such small dataset sizes,
we repeat our experiments across two different axes. For a
given domain and dataset size N , we repeat the experiment
using (i) 3 different random collections of N documents from
the domain’s large pool of documents (see Table. I), and (ii) 3
model training trials. This amounts to a total of 9 experiments
for a given domain and training set size. Each data point
we report on the learning curve corresponds to the average
performance across these 9 experiments on the fixed hold-out
test set.

C. Results

Our experiments aim at answering the following questions:
(1) Is FieldSwap effective in its fully automatic version? (2)
Does it work better with human-supplied inputs? (3) How do
improvements vary across document types and field types?

1) Automatic FieldSwap: We tested both field-to-field and
type-to-type field pair mappings with automatically inferred
key phrases. As shown in Fig. 4, FieldSwap consistently
yielded neutral or better performance across all datasets and
training set sizes we evaluated on. For instance, FieldSwap led
to an average macro-F1 improvement of 1–4 points for the
FCC Forms dataset, 2–5 points for the Brokerage Statements
dataset, and a remarkable 4–11 points for the Earnings dataset.
It is worth noting that novel architecture designs and pre-
training objectives in this space typically result in F1 gains of
1 – 1.5 points [15]. The substantial improvement achieved by
FieldSwap is therefore very exciting. We will further discuss
the effect of document type in Section IV-C3.

Field-to-Field vs Type-to-Type. Our findings indicate that
type-to-type swap outperforms field-to-field swap when the
training set size is small (10 documents). However, as the
training set size increases (50–100 documents), field-to-field
swap either matches or surpasses the performance of type-to-
type swap. Table. III presents the average number of synthetic
documents generated by FieldSwap for each document type
and training set size. Observations suggest that type-to-type
swap typically generates 3-10× more synthetic documents
than field-to-field swap. However, as discussed in Section II-B,
it is more prone to generating contradictory synthetic examples
than field-to-field swap. When the training set is small, the
larger amount of synthetic documents generated by type-to-
type swap provides a performance boost. However, as the
training set size increases, field-to-field swap becomes more
effective as it has access to a sufficient number of source
examples to produce synthetic documents and is less likely



(a) Public Datasets

(b) Proprietary Datasets

Fig. 4: Mean Macro-F1 scores across various domains and training set sizes.

to produce harmful synthetic documents that could negatively
impact the model.

Macro-F1 vs Micro-F1. Current form extraction models per-
form poorly for rare fields when there is only a small amount
of labeled data. We believe FieldSwap is particularly valuable
in this scenario, as it leverages labeled training examples from
other frequent fields to generate synthetic training data for rare
fields. Thus, we prioritize the evaluation metric of macro-F1.

Despite our focus on macro-F1, we also observe that similar
improvements still hold when evaluating using micro-F1. As
shown in Fig. 5, the same pattern of results persists. For in-
stance, FieldSwap achieves an average micro-F1 improvement
of 2-5 points for the Earnings dataset and 1-5 points for the
Brokerage Statements dataset. While the improvement gains
are less pronounced compared to those observed with macro-
F1, this suggests that the most significant gains have come
from rare fields, which aligns with our initial hypothesis.

2) FieldSwap with Human Expert: We conducted a com-
parative analysis of the performance between automatic
FieldSwap and FieldSwap utilizing human expert curated
phrases and field pair mappings on two domains. As shown
in Fig. 4, better key phrases and field pair mappings generally
lead to better performance. Human inputs further improves the
performance by 4–5 F1 points for the Earnings dataset at 50–

100 documents, and by 4 points for the Loan Payments dataset
at 10 documents.

The performance gap is mostly attributed to rare fields, as
shown in Table. IV. For example, year to date.sales pay field
has a particularly low frequency, appearing in only 3.9% of
the corpus of 2000 training documents. In our low data setting
where only a subset of documents is randomly selected, it’s
possible that there are either no or very few labeled examples
for such rare fields. This creates few-shot or even zero-shot
scenarios where automatic approach struggle. In these cases,
a human expert can provide key phrases not found in the
limited training data, leading to a significant advantage. This is
expected, as the automatic approach cannot discover phrases
it has never seen. For such scenarios, the involvement of a
human expert is crucial for achieving optimal performance.

In practice, the decision of whether or not to incorporate hu-
man input ultimately depends on the specific use case and the
trade-off between human resource and optimal performance.

3) Discussions: In this section, we try to answer the
question of how FieldSwap improves across different fields
and document types.

Effect of field type. Our experimental setup associate fields
with five base types (i.e. address, date, money, number, string).
Among the five datasets we evaluated on, there are only two



TABLE III: Average number of FieldSwap synthetic documents at different training set size for each document type.

Number of Synthetic Documents
Domain Original Training Set Size FieldSwap (field-to-field) FieldSwap (type-to-type) FieldSwap (human expert)
FARA 10 2 5 -

50 176 374 -
100 592 1616 -

FCC Forms 10 246 842 -
50 1663 5755 -
100 3310 11346 -

Brokerage Statements 10 256 1266 -
50 1486 7994 -
100 2917 16590 -

Loan Payments 10 435 2378 1136
50 2699 18118 5933
100 6083 38081 11682

Earnings 10 197 1542 366
50 1345 11643 1862
100 2717 26001 3707

(a) Public Datasets

(b) Proprietary Datasets

Fig. 5: Mean Micro-F1 scores across various domains and training set sizes.

TABLE IV: Fields with the largest mean F1 gains between the automatic (field-to-field) and human expert setting when trained
on 50 documents for the Earnings domain. Frequency refers to the fraction of documents that contain said field in a collection
of 2000 documents.

Field Frequency
F1 (FieldSwap,

automatic)
F1 (FieldSwap,
human expert) ∆F1

year to date.sales pay 3.9% 27.91 56.27 28.36
current.sales pay 2.85% 17.97 46.23 28.26
year to date.pto pay 15.9% 50.3 66.78 16.48
current.pto pay 9.5% 14.36 28.18 13.82



(a) Loan Payments (b) Earnings

Fig. 6: Field F1 score differences of FieldSwap over baseline on the Loan Payments and Earnings domain. The length of each
box plot represents the distance between the upper and lower quartiles. Each whisker extends to the furthest data point in each
wing that is within 1.5 times the interquartile range (IQR). The line in the middle of the boxplot indicates the median. The
dots denote outliers. The horizontal red lines mark y = 0.

fields with number type (each in a different domain), making
the results unrepresentative. Therefore, we restrict our analysis
on the remaining four base types. We believe that the number
type shall exhibit a similar pattern to the money type, as they
are somewhat alike.

We investigate the effect of FieldSwap on various field
types within the Loan Payments domain across all training set
sizes. As shown in Fig. 6a, we observe the performance gains
from FieldSwap primarily come from date and money fields,
while we see negative effects on address and string fields.
This is likely because string and address fields often lack
the clear key phrases, making it challenging for FieldSwap to

generate meaningful augmentations. FieldSwap may introduce
spurious correlations and generate poor synthetic documents
that harm the model’s performance. To mitigate this issue,
we can employ the human expert setting. Domain experts can
identify fields that typically lack clear key phrases and exclude
them from FieldSwap augmentation. In our experiments with
the human expert setting, we found that explicitly excluding
such fields dissipated the negative effects.

Besides, it is worth noting that not all string or address
fields lack distinct key phrases. FieldSwap remains effective
for those fields that do have distinct key phrases. We extended
our investigation into the Earnings domain. As shown in



Fig. 6b, FieldSwap demonstrated positive gains on address
and string fields. According to Table. II, the Earnings domain
has fewer fields of the address, date, and string type. This
limits the representativeness of the results compared to the
Loan Payments domain, but they remain insightful.

Effect of document type. As shown in Fig. 4, the most
significant improvement is observed for the Earnings domain.
Compare to other document types, the majority of fields in
Earnings are presented in tabular format, share similar base
types (i.e. money, date), and have clear and succinct phrase in-
dicators. We believe FieldSwap is most effective when dealing
with document types with such characteristics. Furthermore,
since the order of fields within these tables is unimportant,
FieldSwap is particularly well-aligned for augmenting these
structures.

That being said, the Earnings domain also poses a chal-
lenge since many field pairs can easily yield bad synthetic
examples, as discussed in Section II-B (e.g., current.X vs.
year to date.X). Yet, even in the presence of these poten-
tially contradicting pairs, type-to-type swap still improves the
performance across all training set sizes we evaluated on.
This demonstrates that the proposed method tolerates a small
number of these contradictory synthetic examples.

The improvement gain on the FARA domain is relatively
small. This is because this corpus contains only a handful
of fields, with 4 out of the total 6 fields being of the string
type, which FieldSwap is not well-suited for handling. The
remaining two fields belong to different base types and are
thus not swappable. Nevertheless, FieldSwap maintains neutral
or slightly better results throughout the learning curve.

V. RELATED WORK

Form extraction. Approaches for extracting information from
form-like documents typically rely on multimodal features:
text, spatial layout, and visual patterns. Models often make
use of pre-trained encoders that incorporate such multimodal
signals [15], [22], [23], but these encoders require a large
amount of pre-training data, although they do exhibit good
downstream task data efficiency during fine-tuning [24]. Large
amounts of training data are also required by span classifica-
tion approaches [16], [25], sequence labeling approaches [26],
[27], and end-to-end approaches [28]. Rather than suggesting
a new model architecture, we propose a data augmentation
method that is orthogonal to any model architecture.
Data augmentation. Data augmentation is a class of tech-
niques for acquiring additional training examples automati-
cally. Two main categories of data augmentation are rule-based
and model-based techniques, which use hard-coded data trans-
formations or pre-trained models (typically language models),
respectively. Rule-based techniques—such as EDA [12]—are
easier to implement but have limited benefit, whereas model-
based techniques—such as back-translation [29] and example
extrapolation [30]—are more difficult to develop but offer
greater benefit [31]. FieldSwap contains elements of both
categories, as it changes (possibly automatically inferred) key
phrases based on a set of swap rules.

Counterfactual data augmentation has emerged as a valuable
technique in various NLP tasks like text classification and
sentiment analysis. These methods typically involve either
human experts revising training data to create counterfactual
examples [32] or automated term replacement for label inver-
sion [33], which might have subtle similarities with FieldSwap.
However, these approaches do not directly address the unique
challenges of form extraction task, where success hinges on
the accurate identification of key phrases within documents.
FieldSwap offers a specialized solution to identify key phrases
automatically. By focusing solely on key phrases rather than
any general terms in the document, FieldSwap enhances model
robustness without introducing irrelevant or contradictory data
that could hinder training. Additionally, FieldSwap ensures the
plausibility of generated field labels, maintaining the integrity
and relevance of augmented data within the context of form
extraction.

Reference [31] suggest that “the distribution of augmented
data should neither be too similar nor too different from
the original”. FieldSwap achieves this balance by placing
known key phrases in the contexts of other key phrases, which
increases diversity in a controlled way. The use of schema
field types in FieldSwap is similar to the use of entity types
for mention replacement in named entity recognition, which
is effective especially in low-data settings [13].

Other data augmentation techniques have been used for
multimodal tasks that combine text and vision, such as image
captioning [34] and visual question answering [35], [36].
FieldSwap, like these other approaches, focuses on modifying
the textual component of each input rather than the visual
component; that is, the key phrase is replaced but the spatial
layout remains the same.

Perhaps the most similar prior work to ours is [37]. The
main idea of that work is that if two items appear in similar
contexts, then they can be interchanged wherever one of them
occurs to generate new examples. In our work, the items we
change are key phrases associated with schema fields, and we
determine interchangeability based on the base type of the
field. Rather than generate new labeled examples by changing
the value of the field, we generate examples by changing the
surrounding context (via key phrases).

VI. CONCLUSIONS

In this paper, we introduce a data augmentation technique
specifically designed for extraction tasks on visually rich
documents. We leverage the observation that many fields are
associated with a “key phrase” that serves as an identifier.
By replacing the key phrase in a source field example with
that of the target field, we generate augmented examples for
the target field. Experiments on a diverse range of datasets
demonstrate that this simple technique is very effective for
scenarios involving small training sets (10–100 documents),
yielding improvements of 1–11 macro-F1 points.

This result opens up two interesting directions for future
work. Firstly, how can we refine FieldSwap to better handle
the complex scenarios we described in Section II-C? Secondly,



there are several extensions to FieldSwap that are worth
investigating. Under what circumstances does swapping across
document types help? Is it possible to use a large language
model (LLM) instead of a human expert to generate a set
of key phrases based on field names or descriptions? Can we
extract key phrases from an unlabeled corpus to facilitate semi-
supervised learning [38]?
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